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1. Introduction

Properties of solutions to the Cauchy problem for semilinear classical damped wave equations with
power nonlinearity were treated in many papers. The model the authors have in mind is

utt − ∆u + ut = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), (1.1)

where p > 1.
The global (in time) existence of small data energy solutions was given in [14] for p > 1 + 2

n
and by assuming suitable compactly supported small data from the energy space. In [7] the authors
studied (1.1) under the assumption

(u0, u1) ∈ (H1(Rn) ∩ Lm(Rn)) × (L2(Rn) ∩ Lm(Rn)) (1.2)
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for the data, where additional regularity Lm, m ∈ [1, 2) was supposed. They obtained a new critical
exponent pcrit = 1+ 2m

n from the global (in time) existence of small data Sobolev solutions side and the
blow-up side as well. Here blow-up means the non-existence of global (in time) Sobolev solutions.

In [10], assuming that the right-hand side of (1.1) is given by u|u|p−1, the authors proved for given
compactly supported initial data (u0, u1) ∈ H1(Rn)× L2(Rn) and for p ≤ pGN(n) = n

n−2 if n ≥ 3 the local
(in time) existence of energy solutions u ∈ C([0,T ),H1(Rn)) ∩ C1([0,T ), L2(Rn)). In the same paper
the global (in time) existence was proved for small data by using the technique of potential well and
modified potential well. The authors proposed the critical exponent pcrit = pcrit(n) = 1+ 4

n which means
that we have global (in time) existence of small data Sobolev solutions for some admissible p > pcrit,

and local (in time) existence for p > 1 and large data as well.
In [5], the authors generalized the question for the critical exponent to the question for critical

regularity of the right-hand side. The model of interest is

utt − ∆u + ut = |u|1+
2
nµ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x),

where the function µ : τ ∈ [0,∞) −→ µ(τ) ∈ [0,∞) is supposed to be a modulus of continuity. This
means that µ is continuous, concave, strictly increasing and µ(0) = 0.
In [5], a sharp condition on µ to get a threshold between global (in time) existence of small data
solutions and blow-up behaviour was obtained.

Let us now include a time-dependent coefficient b = b(t) in the dissipation term. A first step is to
understand qualitative properties of solutions to the following Cauchy problem:

utt − ∆u + b(t)ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

In [15, 16], a classification of dissipation terms b(t)ut in scattering to free waves producing,
non-effective dissipation terms, effective dissipation terms and overdamping producing is proposed.

In [4], the corresponding semilinear model with power nonlinearity and effective dissipation, that
is,

utt − ∆u + b(t)ut = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x)

is treated. The authors proved the global (in time) existence of small data energy solutions in the
supercritical case p > 1 + 2m

n under assumption (1.2) for the data. Moreover, the Fujita type exponent
pcrit = 1 + 2m

n was verified as critical exponent. Here the dissipation term b(t)ut is called effective if it
satisfies the properties that are described in Section 2.1. The first goal of this paper is to deal with the
semilinear effectively damped Cauchy problem in 1d with critical power nonlinearity and an additional
modulus of continuity term which provides an additional regularity of the right-hand side. Namely, the
Cauchy problem we have in mind is

utt − uxx + b(t)ut = |u|3µ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x). (1.3)

Besides effectively damped semilinear models with scale-invariant dissipation are of special interest.
Recently, several authors are interested in the model

utt − ∆u +
ν

1 + t
ut = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x). (1.4)

In [1, 11, 12], the authors showed that the situation depends strongly on the value of ν. In other words,
the transition of ν from 0 to ∞ describes the change from a hyperbolic to a parabolic like model from
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the point of decay estimates for solutions. Furthermore, they proved that the decay rate of solutions for
large ν is the same that is obtained for solutions of the classical damped wave equation. A particular
case of the Cauchy problem (1.4) with ν = 2 was studied in [3].

The second goal of this paper is to study the semilinear Cauchy problem in 1d with scale-invariant
dissipation, with power nonlinearity and an additional modulus of continuity term. The model of
interest is

utt − uxx +
ν

1 + t
ut = |u|3µ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x). (1.5)

In the further considerations we assume that the modulus of continuity µ given in (1.3) and (1.5)
satisfies the following two conditions:

τ|µ′(τ)| ≤ Cµ(τ) for τ ∈ (0, τ0) and
∫ C0

0

µ(R)
R

dR < ∞, (1.6)

where C is a sufficiently large positive constant, τ0 and C0 are sufficiently small positive constants.
The paper is organized as follows: In Section 2 we present our main results for the global (in

time) existence of small data Sobolev solutions. After introducing the philosophy of our approach in
Section 3 the proofs of the results of Section 2 are given in Section 4. In Section 5 we turn to the
question of blow-up for some cases which are treated in Sections 2 to 4. Finally, some concluding
remarks from Section 6 complete the paper.

We introduce some notations used in this paper. We note that the letter C indicates a generic non-
negative constant, which may change from line to line. The usual Lp norm for Lebesgue spaces is
defined as follows:

∥ f ∥Lp =
( ∫
Rn
| f (x)|dx

) 1
p
, 1 ≤ p < ∞ and ∥ f ∥L∞ = ess sup | f (x)|.

Moreover, H s(Rn) denotes the Sobolev space based on L2(Rn) with s ≥ 0.

2. Global (in time) existence results of small data Sobolev solutions

2.1. Effective dissipation

Let us consider in 1d the Cauchy problem

utt − uxx + b(t)ut = |u|3µ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x). (2.1)

Here b(t)ut is called effective in the model (2.1) if b = b(t) satisfies the following properties:

• b is a positive and monotonic function with tb(t)→ ∞ as t → ∞,
• ((1 + t)2b(t))−1 ∈ L1(0,∞),
• b ∈ C3[0,∞) and |b(k)(t)| ≲ b(t)

(1+t)k for k = 1, 2, 3,
• 1

b < L1(0,∞) and there exists a constant a ∈ [0, 1) such that tb′(t) ≤ ab(t).

Typical examples are

b(t) =
υ

(1 + t)r , b(t) =
υ

(1 + t)r (log(e + t))γ, b(t) =
υ

(1 + t)r(log(e + t))γ
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for some υ > 0, γ > 0 and r ∈ (−1, 1).
We denote by B(t, 0) the primitive of 1/b(t) which vanishes at t = 0, that is,

B(t, 0) =
∫ t

0

1
b(r)

dr.

We denote by B(t, s) the primitive of 1/b(t) which vanishes at t = s, that is,

B(t, s) =
∫ t

s

1
b(r)

dr = B(t, 0) − B(s, 0).

In [4], the authors proved that the primitive B(t, s) satisfies the following properties:

B(t, s) ≈ B(t, 0) if s ∈
[
0,

t
2

]
, (2.2)

B(t, 0) ≈ B(s, 0) if s ∈
[ t
2
, t
]
. (2.3)

Let us formulate the main results for the global (in time) existence of small data Sobolev solutions.

Theorem 2.1. Let (u0, u1) ∈ A :=
(
H1(R) ∩ L1(R)

)
×

(
L2(R) ∩ L1(R)

)
. Assume that the modulus of

continuity µ in (2.1) satisfies the condition (1.6). Then, the following statement holds for a sufficiently
small ε0 > 0: if

∥(u0, u1)∥A ≤ ε for ε ≤ ε0,

then there exists a unique globally (in time) Sobolev solution u to (2.1) belonging to the evolution space

C
(
[0,∞),H1(R)

)
.

Furthermore, the solution satisfies the following decay estimates:

∥u(t, ·)∥L2 ≲
(
1 + B(t, 0)

)− 1
4 ∥(u0, u1)∥A,

∥∂xu(t, ·)∥L2 ≲
(
1 + B(t, 0)

)− 3
4 ∥(u0, u1)∥A,

∥u(t, ·)∥L∞ ≲
(
1 + B(t, 0)

)− 1
2 ∥(u0, u1)∥A.

Example 2.2. The results of Theorem 2.1 can be used to treat the following Cauchy problems:

utt − uxx + b(t)ut = |u|3+α, u(0, x) = u0(x), ut(0, x) = u1(x), α ∈ (0, 1],

utt − uxx + b(t)ut = |u|3
(

log
1
|u|

)−α
, u(0, x) = u0(x), ut(0, x) = u1(x), α > 1.

2.2. Scale-invariant weak dissipation

Let us consider for ν > 1 the following Cauchy problem in 1d:

utt − uxx +
ν

1 + t
ut = |u|3µ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x). (2.4)
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2.2.1. The case ν > 3

Theorem 2.3. Let (u0, u1) ∈ A =
(
H1(R) ∩ L1(R)

)
×

(
L2(R) ∩ L1(R)

)
. Assume that the modulus of

continuity µ in (2.4) satisfies the condition (1.6). Then, the following statement holds for a sufficiently
small ε0 > 0: if

∥(u0, u1)∥A ≤ ε for ε ≤ ε0,

then there exists a unique globally (in time) Sobolev solution u to (2.4) belonging to the evolution space

C
(
[0,∞),H1(R)

)
.

Furthermore, the solution satisfies the decay estimates

∥u(t, ·)∥L2 ≲ (1 + t)−
1
2 ∥(u0, u1)∥A,

∥∂xu(t, ·)∥L2 ≲ (1 + t)−
3
2 ∥(u0, u1)∥A,

∥u(t, ·)∥L∞ ≲ (1 + t)−1∥(u0, u1)∥A.

2.2.2. The case 1 < ν < 3

Let us consider for ν ∈ (1, 3) the following Cauchy problem in 1d:

utt − uxx +
ν

1 + t
ut = |u|3+α(ν)µ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x), (2.5)

where α = α(ν) describes an additional exponent in the power nonlinearity.

Theorem 2.4. Let (u0, u1) ∈ A =
(
H1(R) ∩ L1(R)

)
×

(
L2(R) ∩ L1(R)

)
. Assume that the modulus of

continuity µ in (2.5) satisfies the condition (1.6). Then, the following statement holds for a sufficiently
small ε0 > 0: if

∥(u0, u1)∥A ≤ ε for ε ≤ ε0,

then for α(ν) = 2(3−ν)
1+ν there exists a unique globally (in time) Sobolev solution u to (2.5) belonging to

the evolution space
C
(
[0,∞),H1(R)

)
.

Furthermore, the solution satisfies the decay estimates

∥u(t, ·)∥L2 ≲ (1 + t)−
1
2 ∥(u0, u1)∥A,

∥∂xu(t, ·)∥L2 ≲ (1 + t)−
ν
2 ∥(u0, u1)∥A,

∥u(t, ·)∥L∞ ≲ (1 + t)−
1+ν

4 ∥(u0, u1)∥A.

Example 2.5. The following modulus of continuity can be used in the previous Theorems 2.3 and
2.4:

• µ(τ) = τα, α ∈ (0, 1],
• µ(0) = 0 and for τ > 0 it holds µ(τ) =

(
log 1

τ

)−α
, α > 1,

• µ(0) = 0 and for τ > 0 it holds µ(τ) =
(
log 1

τ

)−1 (
log log 1

τ

)−1
. . .

(
logk 1

τ

)−α
, α > 1, k ∈ N.
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2.2.3. The case ν = 3

Let us consider for ν = 3 the following Cauchy problem in 1d:

utt − uxx +
3

1 + t
ut = |u|3µ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x). (2.6)

Theorem 2.6. Let (u0, u1) ∈ A =
(
H1(R) ∩ L1(R)

)
×

(
L2(R) ∩ L1(R)

)
. Assume that the modulus of

continuity µ in (2.6) satisfies instead of (1.6) the condition

τ|µ′(τ)| ≤ Cµ(τ) for τ ∈ (0, τ0) and
∫ C0

0

µ(R)
R

(
1 +

4
3

log
1
R

) 1
2 dR < ∞. (2.7)

Then, the following statement holds for a sufficiently small ε0 > 0: if

∥(u0, u1)∥A ≤ ε for ε ≤ ε0,

then there exists a unique globally (in time) Sobolev solution u to (2.6) belonging to the evolution space

C([0,∞),H1(R)
)
.

Furthermore, the solution satisfies the decay estimates

∥u(t, ·)∥L2 ≲ (1 + t)−
1
2 ∥(u0, u1)∥A,

∥∂xu(t, ·)∥L2 ≲ (1 + t)−
3
2 (1 + log(1 + t))

1
2 ∥(u0, u1)∥A,

∥u(t, ·)∥L∞ ≲ (1 + t)−1(1 + log(1 + t))
1
4 ∥(u0, u1)∥A.

Example 2.7. The following modulus of continuity can be used in the previous Theorem 2.6:

• µ(τ) = τα, α ∈ (0, 1],
• µ(0) = 0 and for τ > 0 it holds µ(τ) =

(
log 1

τ

)−α
, α > 3

2 ,

• µ(0) = 0 and for τ > 0 it holds µ(τ) =
(
log 1

τ

)− 3
2
(
log log 1

τ

)−1
. . .

(
logk 1

τ

)−α
, α > 1, k ∈ N.

3. Philosophy of our approach

Let us consider the Cauchy problem

utt − uxx + a(t)ut = f (|u|), u(0, x) = u0(x), ut(0, x) = u1(x). (3.1)

Here a = a(t) can be either b = b(t) of (2.1) or ν
1+t of (2.4).

Denote by K0 = K0(t, 0, x),K1 = K1(t, 0, x) the fundamental solutions to the linear homogeneous
Cauchy problem with the initial data (u0, u1) = (δ0, 0) and (u0, u1) = (0, δ0), respectively, where δ0 is
the Dirac distribution in x = 0 with respect to the spatial variables.

According to Duhamel’s principle, solutions of (3.1) may be interpreted as solutions to the nonlinear
integral equation

u(t, x) = K0(t, 0, x) ∗(x) u0(x) + K1(t, 0, x) ∗(x) u1(x) +
∫ t

0
K1(t, s, x) ∗(x) f (|u(s, x)|) ds, (3.2)
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where K0(t, 0, x) ∗(x) u0(x) + K1(t, 0, x) ∗(x) u1(x) is the Sobolev solution of the Cauchy problem

utt − uxx + a(t)ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (3.3)

and K1(t, s, x)∗(x) g(s, x) is the Sobolev solution to the family of parameter-dependent Cauchy problems

utt − uxx + a(t)ut = 0, u(s, x) = 0, ut(s, x) = g(s, x), (3.4)

for 0 ≤ s ≤ t < ∞. Here ∗(x) stands for the convolution with respect to the spatial variable. We want to
underline again, that we understand a solution of (3.1) as a solution of the nonlinear integral equation
(3.2).

In [4, 15, 16] the following results for the Cauchy problems (3.3) and (3.4) with a(t) = b(t) are
proved.

Proposition 3.1. The Sobolev solutions to the Cauchy problem

utt − uxx + b(t)ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x)

satisfy the following estimates:

∥u(t, ·)∥L2 ≲
(
1 + B(t, 0)

)− 1
4 ∥(u0, u1)∥A,

∥∂xu(t, ·)∥L2 ≲
(
1 + B(t, 0)

)− 1
4−

1
2 ∥(u0, u1)∥A.

Proposition 3.2. The Sobolev solutions to the Cauchy problem

utt − uxx + b(t)ut = 0, u(s, x) = 0, ut(s, x) = g(s, x)

satisfy the following estimates:

∥u(t, ·)∥L2 ≲ b(s)−1(1 + B(t, s)
)− 1

4 ∥g(s, ·)∥L2∩L1 , (3.5)

∥∂xu(t, ·)∥L2 ≲ b(s)−1(1 + B(t, s)
)− 1

4−
1
2 ∥g(s, ·)∥L2∩L1 . (3.6)

In [13] the following results for the Cauchy problem (3.3) and (3.4) with a(t) = ν
1+t are proved.

Proposition 3.3. The Sobolev solutions to the Cauchy problem

utt − uxx +
ν

1 + t
ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x) (3.7)

satisfy the following estimates:

If ν > 3 : ∥∂k
xu(t, ·)∥L2 ≲ (1 + t)−

1
2−k∥(u0, u1)∥A, k = 0, 1;

If ν = 3 : ∥u(t, ·)∥L2 ≲ (1 + t)−
1
2 ∥(u0, u1)∥A,

∥∂xu(t, ·)∥L2 ≲ (1 + t)−
3
2
(
1 + log(1 + t)

) 1
2 ∥(u0, u1)∥A;

If 1 < ν < 3 : ∥u(t, ·)∥L2 ≲ (1 + t)−
1
2 ∥(u0, u1)∥A,

∥∂xu(t, ·)∥L2 ≲ (1 + t)−
ν
2 ∥(u0, u1)∥A.
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Using the Gagliardo-Nirenberg inequality from Proposition A.1 with j = 0, m = 1, q = ∞, p = r =
2, and taking account of the dimension n = 1 we may conclude the estimate

∥u∥L∞ ≤ ∥u∥
1
2
L2∥ux∥

1
2
L2 . (3.8)

Here we use that due to a density argument this inequality is true for all functions u ∈ H1(R). So, we
can get the following L∞ estimates for the solutions to the Cauchy problem (3.7):

Remark 3.4. The Sobolev solutions to the Cauchy problem (3.7) satisfy the following L∞ estimates:

If ν > 3 : ∥u(t, ·)∥L∞ ≲ (1 + t)−1∥(u0, u1)∥A;
If ν = 3 : ∥u(t, ·)∥L∞ ≲ (1 + t)−1 (

1 + log(1 + t)
) 1

4 ∥(u0, u1)∥A;
If 1 < ν < 3 : ∥u(t, ·)∥L∞ ≲ (1 + t)−

1+ν
4 ∥(u0, u1)∥A.

Proposition 3.5. The Sobolev solutions to the Cauchy problem

utt − uxx +
ν

1 + t
ut = 0, u(s, x) = 0, ut(s, x) = g(s, x)

satisfy the following estimates for 0 ≤ s ≤ t < ∞:

If ν > 3 : ∥∂k
xv(t, ·)∥L2 ≲

(
∥g(s, ·)∥L1 + (1 + s)

1
2 ∥g(s, ·)∥L2

)
(1 + s)(1 + t)−

1
2−k, k = 0, 1;

If ν = 3 : ∥v(t, ·)∥L2 ≲ (1 + t)−
1
2 (1 + s)∥g(s, ·)∥L1 + (1 + t)−

1
2 (1 + s)

3
2 ∥g(s, ·)∥L2 ,

∥∂xv(t, ·)∥L2 ≲
(
(1 + t)−

3
2 (1 + s)∥g(s, ·)∥L1

+(1 + t)−
3
2 (1 + s)

3
2 ∥g(s, ·)∥L2

) (
1 + log(1 + t)

) 1
2 ;

If 1 < ν < 3 : ∥v(t, ·)∥L2 ≲ (1 + t)−
1
2 (1 + s)∥g(s, ·)∥L1 + (1 + t)−

1
2 (1 + s)

3
2 ∥g(s, ·)∥L2 ,

∥∂xv(t, ·)∥L2 ≲ (1 + t)−
ν
2 (1 + s)−

1
2+

ν
2 ∥g(s, ·)∥L1 + (1 + t)−

ν
2 (1 + s)

ν
2 ∥g(s, ·)∥L2 .

(3.9)

Having all these estimates in hand we turn to (3.2). Our goal is to apply Banach’s fixed point
theorem to the fixed point equation u = Nu, where

Nu := K0(t, 0, x) ∗(x) u0(x) + K1(t, 0, x) ∗(x) u1(x) +
∫ t

0
K1(t, s, x) ∗(x) f (|u(s, x)|) ds.

After introducing a family {X(t)}t>0 of time-dependent solution spaces we will estimate ∥Nu∥X(t) and
∥Nu− Nv∥X(t) for all u, v ∈ X(t). In this way we close the circle and obtain existence and uniqueness of
Sobolev solutions as well.

4. Proofs of the main results

4.1. Proof of Theorem 2.1

Proof. Taking into consideration the decay estimates of Propositions 3.1 and 3.2 we introduce the
following family {X(t)}t>0 of time-dependent solution spaces: X(t) = C([0, t],H1(R)) with the norm

∥u∥X(t) = sup
s∈[0,t]

{(
1 + B(s, 0)

) 1
4 ∥u(s, ·)∥L2 +

(
1 + B(s, 0)

) 3
4 ∥∂xu(s, ·)∥L2 +

(
1 + B(s, 0)

) 1
2 ∥u(s, ·)∥L∞

}
.
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We introduce the operator N by

N : u ∈ X(t)→ Nu = Nu(t, x) := uln(t, x) + unl(t, x),

where
uln(t, x) := K0(t, 0, x) ∗(x) u0(x) + K1(t, 0, x) ∗(x) u1(x)

is a Sobolev solution to the Cauchy problem

uln
tt − uln

xx + b(t)uln
t = 0, uln(0, x) = u0(x), uln

t (0, x) = u1(x),

and

unl(t, x) :=
∫ t

0
K1(t, s, x) ∗(x) |u(s, x)|3µ(|u(s, x)|) ds

is a Sobolev solution to the Cauchy problem

unl
tt − unl

xx + b(t)unl
t = |u|

3µ(|u|), unl(0, x) = 0, unl
t (0, x) = 0.

Our aim is to prove the following inequalities:

∥Nu∥X(t) ≲ ∥(u0, u1)∥A + ∥u∥3X(t), (4.1)

∥Nu − Nv∥X(t) ≲ ∥u − v∥X(t)
(
∥u∥2X(t) + ∥v∥

2
X(t)

)
. (4.2)

The statements of Proposition 3.1 lead together with the definition of ∥u∥X(t) to the estimate∥∥∥uln
∥∥∥

X(t)
≲ ∥(u0, u1)∥A.

So, it remains to prove ∥∥∥unl
∥∥∥

X(t)
≲ ∥u∥3X(t). (4.3)

Let us estimate ∥unl(t, ·)∥L2 . From (3.5) we have∥∥∥unl(t, ·)
∥∥∥

L2 ≲

∫ t

0
b(s)−1(1 + B(t, s))−

1
4
∥∥∥|u(s, ·)|3µ(|u(s, ·)|)

∥∥∥
L2∩L1 ds.

It holds
∥|u(s, ·)|3µ(|u(s, ·)|)∥L2∩L1 ≤ µ(∥u(s, ·)∥L∞)∥|u(s, ·)|3∥L2∩L1 .

To estimate the first term of the last right-hand side we use the definition of ∥ · ∥X(t) to get for 0 ≤ s ≤ t
the estimate

∥u(s, ·)∥L∞ ≲
(
1 + B(s, 0)

)− 1
2 ∥u∥X(t).

Let us assume ∥u∥X(t) ≤ ϵ0 for all t > 0 and some sufficiently small ϵ0 > 0. Then

∥u(s, ·)∥L∞ ≲ ϵ0
(
1 + B(s, 0)

)− 1
2 . (4.4)

Using the Gagliardo-Nirenberg inequality from Proposition A.1 we get for 0 ≤ s ≤ t the estimates

∥|u(s, ·)|3∥L1 ≲
(
1 + B(s, 0)

)−1
∥u∥3X(t), (4.5)
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∥|u(s, ·)|3∥L2 ≲
(
1 + B(s, 0)

)−1− 1
4 ∥u∥3X(t). (4.6)

Using (4.4)–(4.6) with the properties of B = B(t, s) we may conclude

∥∥∥unl(t, ·)
∥∥∥

L2 ≲

∫ t

0
b(s)−1(1 + B(t, s))−

1
4µ

(
ϵ0

(
1 + B(s, 0)

)− 1
2
)(

1 + B(s, 0)
)−1
∥u∥3X(t) ds

≲ ∥u∥3X(t)(1 + B(t, 0))−
1
4

∫ t
2

0
b(s)−1µ

(
ϵ0

(
1 + B(s, 0)

)− 1
2
)(

1 + B(s, 0)
)−1 ds

+∥u∥3X(t)µ(ϵ0)
(
1 + B(t, 0)

)−1
∫ t

t
2

b(s)−1(1 + B(t, s))−
1
4 ds.

For the first integral we obtain after the change of variables R = ϵ0
(
1 + B(s, 0)

)− 1
2 the relation∫ t

2

0
b(s)−1µ

(
ϵ0

(
1 + B(s, 0)

)− 1
2
)(

1 + B(s, 0)
)−1 ds ≲

∫ ϵ0

0

µ(R)
R

dR < ∞.

For the second integral after putting the change of variables r = B(t, s) we get∫ t

t
2

b(s)−1(1 + B(t, s))−
1
4 ds =

∫ B(t, t
2 )

0
(1 + r)−

1
4 dr =

4
3

(
1 + B

(
t,

t
2

)) 3
4
−

4
3
≲

(
1 + B(t, 0)

) 3
4 .

Then, we have

µ(ϵ0)
(
1 + B(t, 0)

)−1
∫ t

t
2

b(s)−1(1 + B(t, s))−
1
4 ds ≲ µ(ϵ0)

(
1 + B(t, 0)

)− 1
4 ≲

(
1 + B(t, 0)

)− 1
4 .

All together implies ∥∥∥unl(t, ·)
∥∥∥

L2 ≲
(
1 + B(t, 0)

)− 1
4 ∥u∥3X(t). (4.7)

In the same way we can prove ∥∥∥∂xunl(t, ·)
∥∥∥

L2 ≲
(
1 + B(t, 0)

)− 3
4 ∥u∥3X(t). (4.8)

To estimate ∥unl(t, ·)∥L∞ we use (3.8) to get the desired estimate∥∥∥unl(t, ·)
∥∥∥

L∞
≲

(
1 + B(t, 0)

)− 1
2 ∥u∥3X(t). (4.9)

From (4.7)–(4.9) we get (4.3).
To prove (4.2) we assume that u and v belong to X(t). Then

Nu − Nv =
∫ t

0
K1(t, s, x) ∗(x)

(
|u(s, x)|3µ(|u(s, x)|) − |v(s, x)|3µ(|v(s, x)|)

)
ds.

We control all norms appearing in ∥Nu−Nv∥X(t). From (1.6), (3.5) and (3.6) together with Minkowski’s
integral inequality we get for j = 0, 1 the estimates
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∥∥∥∂ j
x(Nu − Nv)(t, ·)

∥∥∥
L2 ≲

∫ t

0
b(s)−1(1 + B(t, s))−

1
4−

j
2
∥∥∥|u(s, ·)|3µ(|u(s, ·)|) − |v(s, ·)|3µ(|v(s, ·)|)

∥∥∥
L2∩L1 ds

≲

∫ t

0
b(s)−1(1 + B(t, s))−

1
4−

j
2

∥∥∥∥( ∫ 1

0
µ(|u + τ(v − u)|)|u + τ(v − u)|2 dτ

)
|u − v|(s, ·)

∥∥∥∥
L2∩L1

ds

≲

∫ t

0
b(s)−1(1 + B(t, s))−

1
4−

j
2

∥∥∥∥(|u|2 + |v|2) (u − v)(s, ·)
∥∥∥∥

L2∩L1

∫ 1

0
∥µ(|u + τ(v − u)|)∥L∞ dτ ds.

Similarly to verify (4.4)–(4.6) using Hölder’s inequality and Gagliardo-Nirenberg inequality we obtain

∥µ(|u(s, ·) + τ(v − u)(s, ·)|)∥L∞ ≲ µ
(
ϵ0

(
1 + B(s, 0)

)− 1
2
)

for all τ ∈ [0, 1],∥∥∥(|u|2 + |v|2)(u − v)(s, ·)
∥∥∥

L1 ≲
(
1 + B(s, 0)

)−1
∥u − v∥X(t)

(
∥u∥2X(t) + ∥v∥

2
X(t)

)
,∥∥∥(|u|2 + |v|2)(u − v)(s, ·)

∥∥∥
L2 ≲

(
1 + B(s, 0)

)−1− 1
4 ∥u − v∥X(t)

(
∥u∥2X(t) + ∥v∥

2
X(t)

)
.

Following the same steps to get (4.7)–(4.9) after using the last estimates one can complete the proof.
□

4.2. Proof of Theorem 2.3

Proof. We follow the same steps as in the proof of the previous theorem with the same family of
solution spaces {X(t)}t>0. The norm in X(t) is defined as follows:

∥u∥X(t) = sup
s∈[0,t]

{
(1 + s)

1
2 ∥u(s, ·)∥L2 + (1 + s)

3
2 ∥∂xu(s, ·)∥L2 + (1 + s)∥u(s, ·)∥L∞

}
.

Our goal is again to prove the following inequalities:

∥Nu∥X(t) ≲ ∥(u0, u1)∥A + ∥u∥3X(t), (4.10)

∥Nu − Nv∥X(t) ≲ ∥u − v∥X(t)
(
∥u∥2X(t) + ∥v∥

2
X(t)

)
. (4.11)

From the definition of the solution space X(t) and the estimates of Proposition 3.3 one can get
immediately ∥∥∥uln

∥∥∥
X(t)
≲ ∥(u0, u1)∥A.

We complete the proof of (4.10) by showing∥∥∥unl
∥∥∥

X(t)
≲ ∥u∥3X(t).

Using (3.9) for k = 0, 1 we get

∥∥∥∂k
xu

nl(t, ·)
∥∥∥

L2 ≲

∫ t

0
(1 + s)(1 + t)−

1
2−k

∥∥∥|u(s, ·)|3µ(|u(s, ·)|)
∥∥∥

L1 ds (4.12)

+

∫ t

0
(1 + s)

3
2 (1 + t)−

1
2−k

∥∥∥|u(s, ·)|3µ(|u(s, ·)|)
∥∥∥

L2 ds. (4.13)
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It holds,
∥|u(s, ·)|3µ(|u(s, ·)|)∥Lr ≤ µ(∥u(s, ·)∥L∞)∥|u(s, ·)|3∥Lr for r = 1, 2. (4.14)

Then we use in the first term of the last right-hand side

∥u(s, ·)∥L∞ ≲ ϵ0(1 + s)−1. (4.15)

Using the Gagliardo-Nirenberg inequality from Proposition A.1 together with the definition of X(t) it
follows

∥|u(s, ·)|3∥L1 ≲ (1 + s)−2∥u∥3X(t), (4.16)

∥|u(s, ·)|3∥L2 ≲ (1 + s)−
5
2 ∥u∥3X(t), (4.17)

respectively, for 0 ≤ s ≤ t. Replacing the last three estimates (4.15)–(4.17) in (4.14) and after that in
(4.12) and (4.13) leads to∥∥∥∂k

xu
nl(t, ·)

∥∥∥
L2 ≲ ∥u∥

3
X(t)

∫ t

0
(1 + s)−1(1 + t)−

1
2−kµ

(
ϵ0(1 + s)−1) ds

≲ ∥u∥3X(t)(1 + t)−
1
2−k

∫ t

0
(1 + s)−1µ

(
ϵ0(1 + s)−1) ds ≲ ∥u∥3X(t)(1 + t)−

1
2−k,

where again the condition (1.6) is used. By inequality (3.8) we may conclude∥∥∥unl(t, ·)
∥∥∥

L∞
≲ ∥u∥3X(t)(1 + t)−1.

Summarizing the last estimates gives (4.10). To verify (4.11) we follow the same steps of the proof of
(4.2) taking into consideration the definition of solution space X(t). □

4.3. Proof of Theorem 2.4

Proof. In this case we use the same family {X(t)}t>0 of spaces of Sobolev solutions as before. The norm
∥ · ∥X(t) is related to the estimates of Proposition 3.3 for 1 < ν < 3. Consequently, we introduce

∥u∥X(t) = sup
s∈[0,t]

{
(1 + s)

1
2 ∥u(s, ·)∥L2 + (1 + s)

ν
2 ∥∂xu(s, ·)∥L2 + (1 + s)

1+ν
4 ∥u(s, ·)∥L∞

}
.

Using (3.9) for unl we have∥∥∥unl(t, ·)
∥∥∥

L2 ≲

∫ t

0
(1 + s)(1 + t)−

1
2
∥∥∥|u(s, ·)|3+α(ν)µ(|u(s, ·)|)

∥∥∥
L1 ds

+

∫ t

0
(1 + s)

3
2 (1 + t)−

1
2
∥∥∥|u(s, ·)|3+α(ν)µ(|u(s, ·)|)

∥∥∥
L2 ds.

Similarly to (4.15)–(4.17) we obtain

∥u(s, ·)∥L∞ ≲ ϵ0(1 + s)−
1+ν

4 ,

∥|u(s, ·)|3+α(ν)∥L1 ≲ (1 + s)−
5+ν

4 −α(ν) 1+ν
4 ∥u∥3+α(ν)

X(t) ,

∥|u(s, ·)|3+α(ν)∥L2 ≲ (1 + s)−1− ν2−α(ν) 1+ν
4 ∥u∥3+α(ν)

X(t) .
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In the following we use the relation∫ t

0
(1 + s)Aµ

(
ϵ0(1 + s)−

1+ν
4
)

ds ≲
∫ ϵ0

0
R1−(A+ 5+ν

4 ) 4
1+ν
µ(R)

R
dR, (4.18)

where R = ϵ0(1 + s)−
1+ν

4 . Taking account of (3.9) and (4.18) we arrive at∥∥∥unl(t, ·)
∥∥∥

L2 ≲

∫ t

0
(1 + s)(1 + t)−

1
2 (1 + s)−

5+ν
4 −α(ν) 1+ν

4 µ
(
ϵ0(1 + s)−

1+ν
4
)

ds ∥u∥3+α(ν)
X(t)

+

∫ t

0
(1 + s)

3
2 (1 + t)−

1
2 (1 + s)−1− ν2−α(ν) 1+ν

4 µ
(
ϵ0(1 + s)−

1+ν
4
)

ds ∥u∥3+α(ν)
X(t)

≲ (1 + t)−
1
2

∫ t

0
(1 + s)−

1+ν
4 −α(ν) 1+ν

4 µ
(
ϵ0(1 + s)−

1+ν
4
)

ds ∥u∥3+α(ν)
X(t)

+(1 + t)−
1
2

∫ t

0
(1 + s)

1−ν
2 −α(ν) 1+ν

4 µ
(
ϵ0(1 + s)−

1+ν
4
)

ds ∥u∥3+α(ν)
X(t)

≲ (1 + t)−
1
2 ∥u∥3+α(ν)

X(t)

(∫ ϵ0

0

µ(R)

R
4

1+ν−α(ν)
dR +

∫ ϵ0

0

µ(R)

R
7−ν
1+ν−α(ν)

dR
)

≲ (1 + t)−
1
2 ∥u∥3+α(ν)

X(t)

∫ ϵ0

0

µ(R)
R

dR ≲ (1 + t)−
1
2 ∥u∥3+α(ν)

X(t) ,

where we use condition (1.6) and assume the following conditions:

4
1 + ν

− α(ν) ≤ 1 and
7 − ν
1 + ν

− α(ν) ≤ 1. (4.19)

Under conditions (1.6) and (4.19) we may conclude∥∥∥unl(t, ·)
∥∥∥

L2 ≲ (1 + t)−
1
2 ∥u∥3+α(ν)

X(t) . (4.20)

For estimating ∂xunl we use the last estimates of (3.9) and (4.18) to get∥∥∥∂xunl(t, ·)
∥∥∥

L2 ≲

∫ t

0
(1 + s)−

1
2+

ν
2 (1 + t)−

ν
2 (1 + s)−

5+ν
4 −α(ν) 1+ν

4 µ
(
ϵ0(1 + s)−

1+ν
4
)

ds ∥u∥3+α(ν)
X(t)

+

∫ t

0
(1 + s)

ν
2 (1 + t)−

ν
2 (1 + s)−1− ν2−α(ν) 1+ν

4 µ
(
ϵ0(1 + s)−

1+ν
4
)

ds ∥u∥3+α(ν)
X(t)

≲ (1 + t)−
ν
2

∫ t

0
(1 + s)

ν−7
4 −α(ν) 1+ν

4 µ
(
ϵ0(1 + s)−

1+ν
4
)

ds ∥u∥3+α(ν)
X(t)

+(1 + t)−
ν
2

∫ t

0
(1 + s)−1−α(ν) 1+ν

4 µ
(
ϵ0(1 + s)−

1+ν
4
)

ds ∥u∥3+α(ν)
X(t)

≲ (1 + t)−
ν
2 ∥u∥3+α(ν)

X(t)

(∫ ϵ0

0

µ(R)

R
2ν−2
1+ν −α(ν)

dR +
∫ ϵ0

0

µ(R)
R1−α(ν) dR

)
≲ (1 + t)−

ν
2 ∥u∥3+α(ν)

X(t)

∫ ϵ0

0

µ(R)
R

dR ≲ (1 + t)−
ν
2 ∥u∥3+α(ν)

X(t) ,

where we use condition (1.6) and assume the following conditions:

α(ν) ≥
2ν − 2
1 + ν

− 1 and α(ν) ≥ 0. (4.21)
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Under conditions (1.6) and (4.21) we may conclude∥∥∥∂xunl(t, ·)
∥∥∥

L2 ≲ (1 + t)−
ν
2 ∥u∥3+α(ν)

X(t) . (4.22)

The minimal α(ν) satisfying all the conditions (4.19) and (4.21) is α(ν) = 2(3−ν)
1+ν what we supposed in

the theorem. By inequality (3.8) we may conclude∥∥∥unl(t, ·)
∥∥∥

L∞
≲ (1 + t)−

1+ν
4 ∥u∥3X(t). (4.23)

From (4.20), (4.22) and (4.23) we obtain (4.10). To verify (4.11) we follow the same steps of the proof
of (4.2) by taking into consideration the definition of solution spaces X(t). □

4.4. Proof of Theorem 2.6

Proof. In this case we use the same family {X(t)}t>0 of spaces of Sobolev solutions as before. The norm
∥ · ∥X(t) is related to the estimates of Proposition 3.3 for ν = 3. Consequently, we introduce

∥u∥X(t) = sup
s∈[0,t]

{
(1 + s)

1
2 ∥u(s, ·)∥L2 + (1 + s)

3
2 (1 + log(1 + s))−

1
2 ∥∂xu(s, ·)∥L2

+(1 + s)(1 + log(1 + s))−
1
4 ∥u(s, ·)∥L∞

}
.

Similar to (4.15) and after using the Gagliardo-Nirenberg inequality from Proposition A.1 we obtain

∥u(s, ·)∥L∞ ≲ ϵ0(1 + s)−1(1 + log(1 + s))
1
4 ,

∥|u(s, ·)|3∥L1 ≲ (1 + s)−2(1 + log(1 + s))
1
4 ∥u∥3X(t),

∥|u(s, ·)|3∥L2 ≲ (1 + s)−1− 3
2 (1 + log(1 + s))

1
2 ∥u∥3X(t).

Using these estimates together with (3.9) we arrive at∥∥∥unl(t, ·)
∥∥∥

L2 ≲ (1 + t)−
1
2 ∥u∥3X(t)

∫ t

0
(1 + s)−1(1 + log(1 + s))

1
4µ

(
ϵ0(1 + s)−1(1 + log(1 + s))

1
4
)

ds

+(1 + t)−
1
2 ∥u∥3X(t)

∫ t

0
(1 + s)−1(1 + log(1 + s))

1
2µ

(
ϵ0(1 + s)−1(1 + log(1 + s))

1
4
)

ds,

and ∥∥∥∂xunl(t, ·)
∥∥∥

L2 ≲ (1 + t)−
3
2 (1 + log(1 + t))

1
2 ∥u∥3X(t)

×

∫ t

0
(1 + s)−1(1 + log(1 + s))

1
4µ

(
ϵ0(1 + s)−1(1 + log(1 + s))

1
4
)

ds

+(1 + t)−
3
2 (1 + log(1 + t))

1
2 ∥u∥3X(t)

×

∫ t

0
(1 + s)−1(1 + log(1 + s))

1
2µ

(
ϵ0(1 + s)−1(1 + log(1 + s))

1
4
)

ds.

Now we introduce the change of variables R := ϵ0(1 + s)−1(1 + log(1 + s))
1
4 . Taking account of

ds ≈ −
ϵ0

R2 (1 + log(1 + s))
1
4 dR and log(1 + s) ≤

4
3

log
(ϵ0

R

)
≤

4
3

log
( 1
R

)
,
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we get ∫ t

0
(1 + s)−1(1 + log(1 + s))

1
4µ

(
ϵ0(1 + s)−1(1 + log(1 + s))

1
4
)

ds

≲

∫ C0

0

µ(R)
R

(
1 +

4
3

log
1
R

) 1
4 dR < ∞,

due to condition (2.7). Similarly, we obtain∫ t

0
(1 + s)−1(1 + log(1 + s))

1
2µ

(
ϵ0(1 + s)−1(1 + log(1 + s))

1
4
)

ds ≲
∫ C0

0

µ(R)
R

(
1 +

4
3

log
1
R

) 1
2 dR < ∞.

We can complete the proof in the same way as we did before in the proofs of the other theorems. □

5. A blow-up result

In this section we conclude the influence of the function µ on the non-existence of global (in time)
small data Sobolev solutions or on the so-called blow-up of Sobolev solutions to the Cauchy
problem (1.3). Then from Theorem 5.1 it follows that if the integral condition (1.6) is not satisfied,
then, in general, the solution cannot exist globally (in time). This means the optimality of the integral
condition in (1.6) for the Cauchy problem (1.3).

Theorem 5.1. Let us consider the following Cauchy problem with effective dissipation b(t)ut:

utt − uxx + b(t)ut = |u|3µ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x), (5.1)

where b = b(t) satisfies the assumptions from Section 2.1 and the further condition

lim
t→∞

b(t) = a0 > 0. (5.2)

Let µ = µ(s), s ∈ [0,∞), be a modulus of continuity which satisfies∫ C0

0

µ(s)
s

ds = ∞. (5.3)

Here C0 is a sufficiently small positive constant. The function h : s ∈ R 7−→ h(s) := s3µ(s) is supposed
to be convex on R. The data (u0, u1) ∈ C∞0 (R) are chosen such that∫

R

(
u0(x) + b0u1(x)

)
dx > 0, (5.4)

where b0 is defined in Lemma A.3. Then, we have no global (in time) existence of small data Sobolev
solutions u ∈ C

(
[0,∞), L∞(R)

)
.

Example 5.2. The following modulus of continuity satisfies the condition (5.3) of Theorem 5.1:

• µ(0) = 0 and for τ > 0 it holds µ(τ) =
(
log 1

τ

)−α
, α ∈ (0, 1],

• µ(0) = 0 and for τ > 0 it holds µ(τ) =
(
log 1

τ

)−1 (
log log 1

τ

)−1
. . .

(
logk 1

τ

)−α
, α ∈ (0, 1], k ∈ N.
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Proof. We suppose that the solution u ∈ C
(
[0,∞), L∞(R)

)
exists globally in time. Multiplying (5.1) by

a positive function g = g(t) which is defined in Lemma A.3 we obtain

(g(t)u(t, x))tt − (g(t)u(t, x))xx − (g′(t)u(t, x))t + (−g′(t) + g(t)b(t))ut(t, x) = g(t)|u(t, x)|3µ(|u(t, x)|).

From the definition of g = g(t) we may conclude

(g(t)u(t, x))tt − (g(t)u(t, x))xx − (g′(t)u(t, x))t + ut(t, x) = g(t)|u(t, x)|3µ(|u(t, x)|).

For the further considerations we introduce the following functions:

η(s) =


1 if s ∈ [0, 1

2 ],
decreasing if s ∈ ( 1

2 , 1),
0 if s ≥ 1,

η∗(s) =
{

0 if s ∈ [0, 1
2 ],

η(s) if s ≥ 1
2 .

We define for (t, x) ∈ [0,∞) × R the cut-off functions

ψF(R) = ψF(R)(t, x) = η
(
|x|2 + t
F(R)

)3

and ψ∗F(R) = ψ
∗
F(R)(t, x) = η∗

(
|x|2 + t
F(R)

)3

, (5.5)

where F(R) = B−1(R, 0) and B−1(t, 0) is the inverse function of B(t, 0). It follows that F : R ∈ [0,∞) −→
F(R) ∈ [0,∞) is a strictly increasing function with F(0) = 0 and lim

R−→∞
F(R) = ∞ thanks to 1

b < L1(R+).
Moreover, the support of ψ∗ is contained in

Q∗F(R) = QF(R)\
{
(t, x) : |x|2 + t ≤

F(R)
2

}
.

After integrating by parts we arrive at∫
QF(R)

g(t)|u(t, x)|3µ(|u(t, x)|)ψF(R)(t, x) d(t, x) = −
∫

B√F(R)

(u0(0, x) + b0u1(0, x))ψF(R)(0, x) dx

+

∫
QF(R)

(
g(t)u(t, x)∂2

t ψF(R)(t, x) + (g′(t) − 1)u(t, x)∂tψF(R)(t, x) − g(t)u(t, x)∂2
xψF(R)(t, x)

)
d(t, x).

Due to the assumption u ∈ C
(
[0,∞), L∞(R)

)
all integrals are well-defined. We define the functional

IF(R) :=
∫

QF(R)

g(t)|u(t, x)|3µ(|u(t, x)|)ψF(R)(t, x) d(t, x) =
∫

QF(R)

g(t)h(|u(t, x)|)ψF(R)(t, x) d(t, x).

Then, due to (5.4) it holds

IF(R) ≤

∫
QF(R)

(
g(t)u(t, x)∂2

t ψF(R)(t, x) + (g′(t) − 1)u(t, x)∂tψF(R)(t, x) − g(t)u(t, x)∂2
xψF(R)(t, x)

)
d(t, x).

We have

∂tψF(R) =
3

F(R)
η

(
|x|2 + t
F(R)

)2

η′
(
|x|2 + t
F(R)

)
,
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∂2
t ψF(R) =

6
F(R)2η

(
|x|2 + t
F(R)

)
η′

(
|x|2 + t
F(R)

)2

+
3

F(R)2η

(
|x|2 + t
F(R)

)2

η′′
(
|x|2 + t
F(R)

)
,

∂2
xψF(R) =

24x2

F(R)2η

(
|x|2 + t
F(R)

)
η′

(
|x|2 + t
F(R)

)2

+
12x2

F(R)2η

(
|x|2 + t
F(R)

)2

η′′
(
|x|2 + t
F(R)

)
+

6
F(R)

η

(
|x|2 + t
F(R)

)2

η′
(
|x|2 + t
F(R)

)
.

From (5.5) together with the boundedness of η, η′ and η′′, there exists a constant C > 0 such that∣∣∣∂2
t ψF(R) + ∂tψF(R) + ∂

2
xψF(R)

∣∣∣ ≤ C
F(R)

η∗
(
|x|2 + t
F(R)

)
=

C
F(R)

(ψ∗F(R)(t, x))
1
3 .

We have
IF(R) ≤

C
F(R)

∫
QF(R)

(g(t) +C0)|u(t, x)|(ψ∗F(R)(t, x))
1
3 d(t, x),

where C0 is the constant from Lemma A.3.
Due to (5.2), which implies that g = g(t) is bounded to above, we can choose C1 large enough such

that g(t)
C1
≤ q0 < 1 for all t ≥ 0. Then let us choose C > C1 > C0. Hence,

IF(R) ≤
C

F(R)

∫
QF(R)

(g(t)
C1
+ 1

)
|u(t, x)|(ψ∗F(R)(t, x))

1
3 d(t, x). (5.6)

Applying Lemma A.4 for α = α(t) := g(t) > 0 since b = b(t) is a positive function we get

h


∫

Q∗F(R)

(
g(t)
C1
+ 1

)
|u(t, x)|(ψ∗F(R)(t, x))

1
3 d(t, x)∫

Q∗F(R)

(
g(t)
C1
+ 1

)
d(t, x)

 ≤
∫

Q∗F(R)
h
((

g(t)
C1
+ 1

)
|u(t, x)|(ψ∗F(R)(t, x))

1
3

)
d(t, x)∫

Q∗F(R)

(
g(t)
C1
+ 1

)
d(t, x)

.

Moreover, we have∫
Q∗F(R)

(g(t)
C1
+ 1

)
|u(t, x)|(ψ∗F(R)(t, x))

1
3 d(t, x) =

∫
QF(R)

(g(t)
C1
+ 1

)
|u(t, x)|(ψ∗F(R)(t, x))

1
3 d(t, x).

On the other hand we have

h
(
|u(t, x)|(ψ∗F(R)(t, x))

1
3
)
≤ h (|u(t, x)|) (ψ∗F(R)(t, x)).

All together with the monotonicity and continuity of µ and the existence of h−1 we can get the following
estimate:∫

QF(R)

(g(t)
C1
+ 1

)
|u(t, x)|(ψ∗F(R)(t, x))

1
3 d(t, x) ≤ CF(R)

3
2 h−1


∫

QF(R)

(
g(t)
C1
+ 1

)
h (|u(t, x)|) (ψ∗F(R)(t, x)) d(t, x)

CF(R)
3
2

 ,
(5.7)

where we use the following estimate:∫
Q∗F(R)

(g(t)
C1
+ 1

)
d(t, x) ≈ F(R)

3
2 .

AIMS Mathematics Volume 8, Issue 2, 4764–4785.



4781

Let us now define the functions y and Y as follows:

y = y(r) =
∫

QF(R)

(g(t)
C1
+ 1

)
h (|u(t, x)|) (ψ∗r(t, x)) d(t, x) and Y = Y(F(R)) =

∫ F(R)

0
y(r)r−1 dr.

Then, we have

Y(F(R)) =
∫ F(R)

0

(∫
QF(R)

(g(t)
C1
+ 1

)
h (|u(t, x)|) (ψ∗r(t, x)) d(t, x)

)
r−1 dr

=

∫
QF(R)

(g(t)
C1
+ 1

)
h(|u(t, x)|)

(∫ F(R)

0
(ψ∗r(t, x))r−1 dr

)
d(t, x)

=

∫
QF(R)

(g(t)
C1
+ 1

)
h(|u(t, x)|)

∫ F(R)

0
η∗

(
|x|2 + t

r

)3

r−1 dr

 d(t, x).

We apply the change of variables s = |x|
2+t
r to obtain∫ F(R)

0
η∗

(
|x|2 + t

r

)3

r−1 dr =
∫ ∞

|x|2+t
F(R)

η∗ (s)3 s−1 ds ≤ η
(
|x|2 + t
F(R)

)3 ∫ 1

1
2

s−1 ds = log(2)η
(
|x|2 + t
F(R)

)3

.

Summarizing it follows
Y(F(R)) ≲ log(2)IF(R).

We notice that
d

dF(R)
Y(F(R))F(R) = y(F(R)).

Finally, from (5.6) and (5.7) we get

Y(F(R)) ≲ C2 log(2)F(R)
1
2 h−1

(
dF(R)Y(F(R))

CF(R)
1
2

)
.

The last estimate implies

h
 Y(F(R))

C2 log(2)F(R)
1
2

 ≲ dF(R)Y(F(R))

CF(R)
1
2

.

Then for R ≥ R0 we have Y(F(R))

C2 log(2)F(R)
1
2

3

µ

 Y(F(R0))

C2 log(2)F(R)
1
2

 ≲ dF(R)Y(F(R))

CF(R)
1
2

.

Consequently, we may conclude

1
(C2 log(2))3F(R)

µ

 Y(F(R0))

C2 log(2)F(R)
1
2

 ≲ dF(R)Y(F(R))
CY(F(R))3 .

After integration from F(R0) to F(R) it follows∫ F(R)

F(R0)

1
(C2 log(2))3x

µ

 Y(F(R0))

C2 log(2)x
1
2

 dx ≲
∫ F(R)

F(R0)

dxY(x)
CY(x)3 dx.
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Hence, there exist constants c1 and c2 such that after a change of variables we obtain

∫ F(R)

F(R0)

1
x
µ

(
c1

1
√

x

)
dx = c2

∫ F(R0)−
1
2

F(R)−
1
2

1
s
µ(s) ds ≲

[
−

1
Y(s)2

]F(R)

F(R0)
≲

1

Y
(
F(R0)2)2 < ∞

uniformly for all R ≥ R0. Letting R −→ ∞ and taking account limR→∞ F(R) = ∞ the last chain of
inequality contradicts to the condition (5.3). This completes the proof. □

6. Concluding remarks

Remark 6.1. The results of this paper explain the critical regularity (not the critical exponent) for
Sobolev solutions to the Cauchy problem

utt − uxx + b(t)ut = |u|3µ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x).

Remark 6.2. A reasonable application of Theorem 5.1 requires a local (in time) existence result. In
the following we restrict ourselves for p > 1 to the effectively damped Cauchy problem

utt − uxx + b(t)ut = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x), (6.1)

where the data u0 and u1 is supposed to belong to C∞0 (R). Then due to [4] for p ∈ (1, 3] there exists
a local (in time) energy solution u ∈ C

(
[0,T ),H1(R)

)
∩ C1([0,T ), L2(R)

)
of the Cauchy problem (6.1).

Then it is clear that one can expect such a local (in time) existence result for the Cauchy problem (1.3),
too because the right-hand side is more regular due to the presence of a modulus of continuity term.

Remark 6.3. A blow-up result for local (in time) Sobolev solutions to the effectively damped Cauchy
problem

utt − uxx + b(t)ut = |u|3µ(|u|), u(0, x) = u0(x), ut(0, x) = u1(x),

where limt→∞ b(t) = 0, remains as an open problem.

Acknowledgments

The authors thank both referees for their valuable proposals to improve the readability of the paper.
This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate

Studies and Scientific Research, King Faisal University, Saudi Arabia [Project No. GRANT2124 (The
number of the old project that is transferred to the new project is No. GRANT1509)].

Conflict of interest

The authors declare no conflicts of interest in this paper.

AIMS Mathematics Volume 8, Issue 2, 4764–4785.



4783

References

1. M. D’Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods
Appl. Sci., 38 (2015), 1032–1045. https://doi.org/10.1002/mma.3126

2. M. D’Abbicco, S. Lucente, A modified test function method for damped wave equations, Adv.
Nonlinear Stud., 13 (2013), 867–892. https://doi.org/10.1515/ans-2013-0407

3. M. D’Abbicco, S. Lucente, M. Reissig, A shift in the Strauss exponent for semilinear
wave equations with a not effective damping, J. Differ. Equ., 259 (2015), 5040–5073.
https://doi.org/10.1016/j.jde.2015.06.018

4. M. D’Abbicco, S. Lucente, M. Reissig, Semi-linear wave equations with effective damping, Chin.
Ann. Math. Ser. B, 34 (2013), 345–380. https://doi.org/10.1007/s11401-013-0773-0

5. M. R. Ebert, G. Girardi, M. Reissig, Critical regularity of nonlinearities in semilinear classical
damped wave equations, Math. Ann., 378 (2020), 1311–1326. https://doi.org/10.1007/s00208-019-
01921-5

6. A. Friedman, Partial differential equations, Corrected reprint of the original edition, Robert E.
Krieger Publishing Co., New York, 1976.

7. R. Ikehata, M. Ohta, Critical exponents for semilinear dissipative wave equations in RN , J. Math.
Anal. Appl., 269 (2002), 87–97. https://doi.org/10.1016/S0022-247X(02)00021-5

8. J. Lin, K. Nishihara, J. Zhai, Critical exponent for the semilinear wave equation with time-depen-
dent damping, Discrete Contin. Dyn. Syst., 32 (2012), 4307–4320.
https://doi.org/10.3934/dcds.2012.32.4307

9. A. Mohammed Djaouti, Semilinear systems of weakly coupled damped waves, Ph.D. Thesis, TU
Bergakademie Freiberg, Freiberg, Germany, 2018.

10. M. Nakao, K. Ono, Existence of global solutions to the Cauchy problem for the semilinear
dissipative wave equations, Math. Z., 214 (1993), 325–342. https://doi.org/10.1007/BF02572407

11. W. Nunes do Nascimento, A. Palmieri, M. Reissig, Semi-linear wave models with power non-
linearity and scale invariant time-dependent mass and dissipation, Math. Nachr., 290 (2017),
1779–1805. https://doi.org/10.1002/mana.201600069

12. A. Palmieri, Global in time existence and blow-up results for a semilinear wave equation with
scale-invariant damping and mass, Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany,
2018.

13. A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale
invariant time-dependent mass and dissipation, II, Math. Nachr., 291 (2018), 1859–1892.
https://doi.org/10.1002/mana.201700144

14. G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ.
Equ., 174 (2001), 464–489. https://doi.org/10.1006/jdeq.2000.3933

15. J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipation,
PhD Thesis, TU Bergakademie Freiberg, 2004.

AIMS Mathematics Volume 8, Issue 2, 4764–4785.

http://dx.doi.org/https://doi.org/10.1002/mma.3126
http://dx.doi.org/https://doi.org/10.1515/ans-2013-0407
http://dx.doi.org/https://doi.org/10.1016/j.jde.2015.06.018
http://dx.doi.org/https://doi.org/10.1007/s11401-013-0773-0
http://dx.doi.org/https://doi.org/10.1007/s00208-019-01921-5
http://dx.doi.org/https://doi.org/10.1007/s00208-019-01921-5
http://dx.doi.org/https://doi.org/10.1016/S0022-247X(02)00021-5
http://dx.doi.org/https://doi.org/10.3934/dcds.2012.32.4307
http://dx.doi.org/https://doi.org/10.1007/BF02572407
http://dx.doi.org/https://doi.org/10.1002/mana.201600069
http://dx.doi.org/https://doi.org/10.1002/mana.201700144
http://dx.doi.org/https://doi.org/10.1006/jdeq.2000.3933


4784

16. J. Wirth, Wave equations with time-dependent dissipation II, Effective dissipation, J. Differ. Equ.,
232 (2007), 74–103. https://doi.org/10.1016/j.jde.2006.06.004

Appendix

Here we state some results which come into play in our proofs.
The next Proposition can be found in [6], Part 1, Theorem 9.3.
Proposition A.1. Let j,m ∈ N with j < m, and let u ∈ Cm

0 (Rn), i.e. u ∈ Cm(Rn) with compact
support. Let θ ∈ [ j

m , 1], and let p, q, r in [1,∞] be such that

j −
n
q
=

(
m −

n
r

)
θ −

n
p

(1 − θ).

Then

∥D ju∥Lq ≤ Cn,m, j,p,r,θ∥Dmu∥θLr ∥u∥1−θLp

provided that (
m −

n
r

)
− j < N, that is,

n
r
> m − j or

n
r
< N.

If (
m −

n
r

)
− j ∈ N,

then Gagliardo-Nirenberg inequality holds provided that θ ∈ [ j
m , 1).

Proposition A.2. The operator N maps X(t) into itself and has one and only one fixed point u ∈ X(t)
if the following inequalities hold:

∥Nu∥X(t) ≤ C0(t)∥(u0, u1)∥Am,s +C1(t)∥u∥pX(t),

∥Nu − Nv∥X(t) ≤ C2(t)∥u − v∥X(t)
(
∥u∥p−1

X(t) + ∥v∥
p−1
X(t)

)
,

where C1(t),C2(t) −→ 0 for t −→ +0 and C0(t),C1(t),C2(t) ≤ C for all t ∈ [0,∞). For the proof see for
example [9].

Lemma A.3. Let g = g(t) ∈ C([0,∞)) be a solution of the following initial value problem for an
ordinary differential equation:

−g′(t) + g(t)b(t) = 1, g(0) =
1
b0
=

∫ ∞

0
e−

∫ t
0 b(τ) dτ dt.

If b = b(t) satisfies the assumptions of the effective case , then it holds g(t) ≈ 1
b(t) and

|g′(t) − 1| ≤ C0 = C0(b).

The proof of Lemma A.3 can be found in [2, 8].

In the following lemma we present the classic Jensen’s inequality with respect to the weighted
Lebesgue measure α(x)dx.
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Lemma A.4. Let Φ be a convex function on R. Let α := α(x) defined and non-negative almost
everywhere on Ω, such that α is positive on a set of positive measure. Then, it holds

Φ


∫
Ω
α(x)u(x)dx∫
Ω
α(x)dx

 ≤
∫
Ω
α(x)Φ(u(x))dx∫
Ω
α(x)dx

provided that all integrals are meaningful and u is non-negative.
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