Research article

Combine influence of Hall effects and viscous dissipation on the motion of ethylene glycol conveying alumina, silica and titania nanoparticles using the non-Newtonian Casson model

  • Received: 06 October 2022 Revised: 17 November 2022 Accepted: 24 November 2022 Published: 06 December 2022
  • MSC : 65L10, 76A02, 76D05

  • A vital role of ternary hybrid nanofluid is visualized as a significant improvement of thermal performance and enhancement in thermal rate which is applicable in automobiles for coolant process, thermodynamics of fuel. This process of ternary hybrid nanofluid is utilized to enhance maximum performance of thermal energy and applicable in chemical products, solar power, melting process, wire paintings, biological products, solar system, cooling process, glasses melting, glass fiber, metal grinding etc. Three-dimensional motion of ternary hybrid nanoparticles in partially Casson fluid over a vertical stretching surface is addressed using Darcy's Forchheirmer theory. Further, effects of Joule heating, non-uniform thermal radiation and viscous dissipation are considered in the energy equation and motion of ethylene glycol contains alumina, silica, and titania nanoparticles with various shape effects. Similarity variables are utilized to derive the system of ODEs from PDEs. A system of ODEs is numerically solved by a finite element method. It was concluded that the thermal field for platelet nanoparticles is greater than the thermal field for cylindrical nanoparticles. Nusselt number increases versus change in ion slip, Hall and magnetic parameters. Maximum production of heat energy is obtained for the case of tri-hybrid nanomaterial rather than for the case of hybrid nanomaterial.

    Citation: Umar Nazir, Kanit Mukdasai. Combine influence of Hall effects and viscous dissipation on the motion of ethylene glycol conveying alumina, silica and titania nanoparticles using the non-Newtonian Casson model[J]. AIMS Mathematics, 2023, 8(2): 4682-4699. doi: 10.3934/math.2023231

    Related Papers:

  • A vital role of ternary hybrid nanofluid is visualized as a significant improvement of thermal performance and enhancement in thermal rate which is applicable in automobiles for coolant process, thermodynamics of fuel. This process of ternary hybrid nanofluid is utilized to enhance maximum performance of thermal energy and applicable in chemical products, solar power, melting process, wire paintings, biological products, solar system, cooling process, glasses melting, glass fiber, metal grinding etc. Three-dimensional motion of ternary hybrid nanoparticles in partially Casson fluid over a vertical stretching surface is addressed using Darcy's Forchheirmer theory. Further, effects of Joule heating, non-uniform thermal radiation and viscous dissipation are considered in the energy equation and motion of ethylene glycol contains alumina, silica, and titania nanoparticles with various shape effects. Similarity variables are utilized to derive the system of ODEs from PDEs. A system of ODEs is numerically solved by a finite element method. It was concluded that the thermal field for platelet nanoparticles is greater than the thermal field for cylindrical nanoparticles. Nusselt number increases versus change in ion slip, Hall and magnetic parameters. Maximum production of heat energy is obtained for the case of tri-hybrid nanomaterial rather than for the case of hybrid nanomaterial.



    加载中


    [1] N. Casson, A flow equation for pigment-oil suspensions of the printing ink type, Rheology of disperse systems, 1959.
    [2] I. Chabani, F. Mebarek-Oudina, A. A. I. Ismail, MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle, Micromachines, 13 (2022), 224. https://doi.org/10.3390/mi13020224 doi: 10.3390/mi13020224
    [3] Y. M. Chu, S. Bashir, M. Ramzan, M. Y. Malik, Model‐based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects, Math. Method. Appl Sci., 2022. https://doi.org/10.1002/mma.8234 doi: 10.1002/mma.8234
    [4] F. Selimefendigil, H. F. Öztop, M. Afrand, Shape effects of TEG mounted ventilated cavities with alumina-water nanofluids on the performance features by using artificial neural networks, Eng. Anal. Bound. Elem., 140 (2022), 79–97. https://doi.org/10.1016/j.enganabound.2022.04.005 doi: 10.1016/j.enganabound.2022.04.005
    [5] S. Saleem, I. L. Animasaun, S. J. Yook, Q. M. Al-Mdallal, N. A. Shah, M. Faisal, Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface, Significance of thermo-migration and Brownian motion, Surf. Interfaces, 30 (2022), 101854. https://doi.org/10.1016/j.surfin.2022.101854 doi: 10.1016/j.surfin.2022.101854
    [6] S. Saleem, D. Gopal, N. A, Shah, N. Feroz, N. Kishan, J. D. Chung, et al., Modelling entropy in magnetized flow of eyring-powell nanofluid through nonlinear stretching surface with chemical reaction: A finite element method approach, Nanomaterials, 12 (2022), 1811. https://doi.org/10.3390/nano12111811 doi: 10.3390/nano12111811
    [7] E. A. Algehyne, E. R. El-Zahar, S. H. Elhag, F. S. Bayones, U. Nazir, M. Sohail, et al., Investigation of thermal performance of Maxwell hybrid nanofluid boundary value problem in vertical porous surface via finite element approach, Sci. Rep., 12 (2022), 2335. https://doi.org/10.1038/s41598-022-06213-8 doi: 10.1038/s41598-022-06213-8
    [8] M. Imran, S. Yasmin, H. Waqas, S. A. Khan, T. Muhammad, N. Alshammari, et al., Computational analysis of nanoparticle shapes on hybrid nanofluid flow due to flat horizontal plate via solar collector, Nanomaterials, 12 (2022), 663. https://doi.org/10.3390/nano12040663 doi: 10.3390/nano12040663
    [9] M. Sohail, U. Nazir, S. Naz, A. Singh, K. Mukdasai, M. A. Ali, et al., Utilization of Galerkin finite element strategy to investigate comparison performance among two hybrid nanofluid models, Sci. Rep., 12 (2022), 18970. https://doi.org/10.1038/s41598-022-22571-9 doi: 10.1038/s41598-022-22571-9
    [10] U. Khan, F. Mebarek-Oudina, A. Zaib, A. Ishak, S. Abu Bakar, E. S. M Sherif, et al., An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces, Wave. Random Complex, 2022 (2022), 1–14. https://doi.org/10.1080/17455030.2022.2102689 doi: 10.1080/17455030.2022.2102689
    [11] K. Sarada, F. Gamaoun, A. Abdulrahman, S. O. Paramesh, R. Kumar, G. D. Prasanna, et al., Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model, Case Stud. Therm. Eng., 38 (2022), 102332. https://doi.org/10.1016/j.csite.2022.102332 doi: 10.1016/j.csite.2022.102332
    [12] U. Nazir, M. Sohail, P. Kumam, K. Sitthithakerngkiet, A. A. A. Mousa, M. J. Khan, et al., A dynamic assessment of various non-Newtonian models for ternary hybrid nanomaterial involving partially ionized mechanism, Sci Rep., 12 (2022), 10306. https://doi.org/10.1038/s41598-022-14312-9 doi: 10.1038/s41598-022-14312-9
    [13] A. Dezfulizadeh, A. Aghaei, A. Hassani Joshaghani, M. M. Najafizadeh, Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu-SiO2-MWCNT ternary hybrid nanofluid based on empirical data, J. Therm. Anal. Calorim., 147 (2022), 4781–4804. https://doi.org/10.1007/s10973-021-10867-3 doi: 10.1007/s10973-021-10867-3
    [14] A. S. Oke, Heat and mass transfer in 3D MHD flow of EG-based ternary hybrid nanofluid over a rotating surface, Arab. J. Sci. Eng., 47 (2022), 16015–16031. https://doi.org/10.1007/s13369-022-06838-x doi: 10.1007/s13369-022-06838-x
    [15] W. Xiu, I. L. Animasaun, Q. M. Al-Mdallal, A. K. Alzahrani, T. Muhammad, Dynamics of ternary-hybrid nanofluids due to dual stretching on wedge surfaces when volume of nanoparticles is small and large: forced convection of water at different temperatures, Int. Commun. Heat Mass, 137 (2022), 106241. https://doi.org/10.1016/j.icheatmasstransfer.2022.106241 doi: 10.1016/j.icheatmasstransfer.2022.106241
    [16] I. L. Animasaun, K. K. Asogwa, Significance of suction and dual stretching: Comparative analysis between the dynamics of water-based alumina nanoparticle aggregation with water-based cupric nanoparticle aggregation, J. Nigerian Math. Soc., 40 (2022), 161–181.
    [17] G. Rasool, A. Shafiq, Y. M. Chu, M. S. Bhutta, A. Ali, Optimal homotopic exploration of features of cattaneo-christov model in second grade nanofluid flow via Darcy-Forchheimer medium subject to viscous dissipation and thermal radiation, Comb. Chem. High T. Scr., 25 (2022), 2485–2497. https://doi.org/10.2174/1386207324666210903144447 doi: 10.2174/1386207324666210903144447
    [18] M. U. Ashraf, M. Qasim, A.Wakif, M. I. Afridi, I. L. Animasaun, A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood‐based nanofluid containing magnetite nanoparticles: A physiological application, Numer. Meth. Part. D. E., 38 (2022), 666–692. https://doi.org/10.1002/num.22676 doi: 10.1002/num.22676
    [19] L. Hendraningrat, O. Torsæter, Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems, Appl. Nanosci., 5 (2015), 181–199. https://doi.org/10.1007/s13204-014-0305-6 doi: 10.1007/s13204-014-0305-6
    [20] Y. Q. Song, B. D. Obideyi, N. A. Shah, I. L. Animasaun, Y. M. Mahrous, J. D. Chung, Significance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface, Case Stud. Therm. Eng., 26 (2021), 101050. https://doi.org/10.1016/j.csite.2021.101050 doi: 10.1016/j.csite.2021.101050
    [21] I. L. Animasaun, N. A. Shah, A. Wakif, B. Mahanthesh, R. Sivaraj, O. K. Koriko, Ratio of momentum diffusivity to thermal diffusivity: Introduction, meta-analysis, and scrutinization., CRC Press, 2022.
    [22] I. L. Animasaun, O. K. Koriko, K. S. Adegbie, H. A. Babatunde, R. O. Ibraheem, N. Sandeep, et al., Comparative analysis between 36 nm and 47 nm alumina-water nanofluid flows in the presence of Hall effect, J. Therm. Anal. Calorim., 135 (2019), 873–886. https://doi.org/10.1007/s10973-018-7379-4 doi: 10.1007/s10973-018-7379-4
    [23] A. A. Farooq, M. Kahshan, S. Saleem, M. Rahimi-Gorji, F. S. Al-Mubaddel, Entropy production rate in ciliary induced flows through cylindrical tubules under the consequences of Hall effect, J. Taiwan Inst. Chem. E., 120 (2021), 207–217. https://doi.org/10.1016/j.jtice.2021.03.024 doi: 10.1016/j.jtice.2021.03.024
    [24] J. A. Khan, M. Mustafa, T. Hayat, A. Alsaedi, On three-dimensional flow and heat transfer over a non-linearly stretching sheet: analytical and numerical solutions, PloS one., 9 (2014), e107287. https://doi.org/10.1371/journal.pone.0107287 doi: 10.1371/journal.pone.0107287
    [25] M. Maurer, C. Kessler, Identification and quantification of ethylene glycol and diethylene glycol in plasma using gas chromatography-mass spectrometry, Arch. Toxicol., 62 (1988), 66–69. https://doi.org/10.1007/BF00316260 doi: 10.1007/BF00316260
    [26] A. Mariano, M. J. Pastoriza-Gallego, L. Lugo, A. Camacho, S. Canzonieri, M. M. Piñeiro, Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids, Fluid Phase Equilibr., 337 (2013), 119–124. https://doi.org/10.1016/j.fluid.2012.09.029 doi: 10.1016/j.fluid.2012.09.029
    [27] I. Tlili, Impact of thermal conductivity on the thermophysical properties and rheological behavior of nanofluid and hybrid nanofluid, Math. Sci., 2022. https://doi.org/10.1007/s40096-021-00377-6 doi: 10.1007/s40096-021-00377-6
    [28] I. L. Animasaun, S. J. Yook, T. Muhammad, A. Mathew, Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface, Surf. Interfaces, 28 (2022), 101654. https://doi.org/10.1016/j.surfin.2021.101654 doi: 10.1016/j.surfin.2021.101654
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1075) PDF downloads(63) Cited by(7)

Article outline

Figures and Tables

Figures(12)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog