Research article Special Issues

Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation

  • Received: 18 September 2023 Revised: 19 October 2023 Accepted: 23 October 2023 Published: 31 October 2023
  • MSC : 30C45, 30C80, 33C50

  • In the current article, we introduced new subclasses of bi-univalent functions associated with bounded boundary rotation. For these new classes, the authors first obtained two initial coefficient bounds. They also verified the special cases where the familiar Brannan and Clunie's conjecture were satisfied. Furthermore, the famous Fekete-Szegö inequality was obtained for the newly defined subclasses of bi-univalent functions, and some of the results improved the earlier results available in the literature.

    Citation: Prathviraj Sharma, Srikandan Sivasubramanian, Nak Eun Cho. Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation[J]. AIMS Mathematics, 2023, 8(12): 29535-29554. doi: 10.3934/math.20231512

    Related Papers:

  • In the current article, we introduced new subclasses of bi-univalent functions associated with bounded boundary rotation. For these new classes, the authors first obtained two initial coefficient bounds. They also verified the special cases where the familiar Brannan and Clunie's conjecture were satisfied. Furthermore, the famous Fekete-Szegö inequality was obtained for the newly defined subclasses of bi-univalent functions, and some of the results improved the earlier results available in the literature.



    加载中


    [1] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanium, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344–351. https://doi.org/10.1016/j.aml.2011.09.012 doi: 10.1016/j.aml.2011.09.012
    [2] H. S. Al-Amiri, T. S. Fernando, On close-to-convex functions of complex order, Int. J. Math. Math. Sci., 13 (1990), 840876. https://doi.org/10.1155/S0161171290000473 doi: 10.1155/S0161171290000473
    [3] B. S. T. Alkahtani, P. Goswami, T. Bulboacă, Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions, Miskolc Math. Notes, 17 (2016), 739–748. https://doi.org/10.18514/MMN.2017.1565 doi: 10.18514/MMN.2017.1565
    [4] D. A. Brannan, On functions of bounded boundary rotation-Ⅰ, Proc. Edinburgh Math. Soc., 16 (1969), 339–347. https://doi.org/10.1017/S001309150001302X doi: 10.1017/S001309150001302X
    [5] D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, London: Academic Press, 1980.
    [6] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, In: Mathematical analysis and its applications, 53–60, Oxford: Pergamon, 1985.
    [7] M. Çağlar, G. Palpandy, E. Deniz, Unpredictability of initial coefficients for $m$-fold symmetric bi-univalent starlike and convex functions defined by subordinations, Afr. Mat., 29 (2018), 793–802. https://doi.org/10.1007/s13370-018-0578-0 doi: 10.1007/s13370-018-0578-0
    [8] N. E. Cho, E. Analouei Adegani, S. Bulut, A. Motamednezhad, The second Hankel determinant problem for a class of bi-close-to-convex functions, Mathematics, 7 (2019), 986. https://doi.org/10.3390/math7100986 doi: 10.3390/math7100986
    [9] M. Darus, T. N. Shanmugam, S. Sivasubramanian, Fekete–Szegö inequality for a certain class of analytic functions, Mathematica, 49 (2007), 29–34.
    [10] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), 49–60. https://doi.org/10.7153/jca-02-05 doi: 10.7153/jca-02-05
    [11] E. Deniz, J. M. Jahangiri, S. K. Kına, S. G. Hamidi, Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Inequal., 12 (2018), 645–653. https://doi.org/10.7153/jmi-2018-12-49 doi: 10.7153/jmi-2018-12-49
    [12] P. L. Duren, Univalent functions, New York: Springer, 1983.
    [13] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048
    [14] S. P. Goyal, P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20 (2012), 179–182. https://doi.org/10.1016/j.joems.2012.08.020 doi: 10.1016/j.joems.2012.08.020
    [15] T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22 (2012), 15–26.
    [16] S. Kanas, V. Sivasankari, R. Karthiyayini, S. Sivasubramanian, Second Hankel determinant for a certain subclass of bi-close to convex functions defined by Kaplan, Symmetry, 13 (2021), 567.
    [17] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169–185. http://projecteuclid.org/euclid.mmj/1028988895
    [18] S. Kazımoğlu, E. Deniz, Fekete-Szegö problem for generalized bi-subordinate functions of complex order, Hacet. J. Math. Stat., 49 (2020), 1695–1705.
    [19] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. https://doi.org/10.2307/2035949 doi: 10.2307/2035949
    [20] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89–95. https://doi.org/10.2307/2046556 doi: 10.2307/2046556
    [21] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.2307/2035225 doi: 10.2307/2035225
    [22] Y. Li, K. Vijaya, G. Murugusundaramoorthy, H. Tang, On new subclasses of bi-starlike functions with bounded boundary rotation, AIMS Mathematics, 5 (2020) 3346–3356. https://doi.org/10.3934/math.2020215 doi: 10.3934/math.2020215
    [23] A. K. Mishra, M. M. Soren, Coefficient bounds for bi-starlike analytic functions, Bull. Belg. Math. Soc.-Simon Stevin, 21 (2014), 157–167.
    [24] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|\zeta| < 1 $, Arch. Rational Mech. Anal., 32 (1969), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
    [25] V. Paatero, Über Gebiete von beschrankter Randdrehung, Ann. Acad. Sci. Fenn. Ser. A., 37 (1933), 9.
    [26] K. S. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975/76), 311–323. https://doi.org/10.4064/ap-31-3-311-323 doi: 10.4064/ap-31-3-311-323
    [27] B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math., 10 (1971), 6–16. https://doi.org/10.1007/BF02771515 doi: 10.1007/BF02771515
    [28] M. O. Reade, On close-to-convex univalent functions, Michigan Math. J., 3 (1955), 59–62.
    [29] M. O. Reade, The coefficients of close-to-convex functions, Duke Math. J., 23 (1956), 459–462.
    [30] M. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374–408. https://doi.org/10.2307/1968451 doi: 10.2307/1968451
    [31] S. Sivasubramanian, R. Sivakumar, S. Kanas, S. A. Kim, Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions, Ann. Polon. Math., 113 (2015), 295–304. https://doi.org/10.4064/ap113-3-6 doi: 10.4064/ap113-3-6
    [32] H. M. Srivastava, A. K. Mishra P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009
    [33] H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23 (2015), 242–246. https://doi.org/10.1016/j.joems.2014.04.002 doi: 10.1016/j.joems.2014.04.002
    [34] D. K. Thomas, On the coefficients of bounded boundary rotation, Proc. Amer. Math. Soc., 36 (1972), 123–129. https://doi.org/10.1090/S0002-9939-1972-0308384-2 doi: 10.1090/S0002-9939-1972-0308384-2
    [35] Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994. https://doi.org/10.1016/j.aml.2011.11.013 doi: 10.1016/j.aml.2011.11.013
    [36] Q. H. Xu, H. M. Srivastava, H. G. Xiao, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034
    [37] Q. H. Xu, H. M. Srivastava, L. Zhou, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett., 24 (2011), 396–401. https://doi.org/10.1016/j.aml.2010.10.037 doi: 10.1016/j.aml.2010.10.037
    [38] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc.-Simon Stevin, 21 (2014), 169–178.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1343) PDF downloads(91) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog