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1. Introduction

LetA be the class of all functions defined by

f (z) = z +

∞∑
n=2

anzn, (1.1)

normalized by the conditions f (0) = 0 and f ′(0) − 1 = 0, which are analytic in D = {z : |z| < 1}.
Furthermore, let us denote by S the subclass ofA where the functions in S are also univalent in D. Let
S∗(γ) and C(γ) be the subclasses of S consisting of functions that are starlike of order γ and convex of
order γ, 0 ≤ γ < 1. The analytic descriptions of the above two classes are respectively given by

S∗(γ) =

{
f ∈ S : <

(
z f ′(z)
f (z)

)
> γ, 0 ≤ γ < 1

}
(1.2)
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and

C(γ) =

{
f ∈ S : <

(
1 +

z f ′′(z)
f ′(z)

)
> γ, 0 ≤ γ < 1

}
. (1.3)

Note that S∗(0) ≡ S∗ and C(0) ≡ C, the class of all starlike and convex functions. Let 0 ≤ γ < 1.
A function f (z) ∈ A given in (1.1) with f ′(z) , 0 on D is said to be in the class of the close-to-convex
function of order γ if there exists a function φ ∈ S∗ such that

<

(
z f ′(z)
φ(z)

)
> γ.

The class of all close-to-convex functions of order γ are denoted byK(γ). For 0 ≤ γ < 1, a function
f ∈ A of the form given in (1.1) with f ′(z) , 0 on D is said to be in the class of the close-to-star
function of order γ if there exists a function φ(z) ∈ S∗ such that

<

(
f (z)
φ(z)

)
> γ.

The class of all close-to-star functions of order γ are denoted by CS∗(γ). For details on close-to-
convex functions and close-to-star functions, one may refer to [20] and [28, 29] (see [2] also).

It is already known that every function f ∈ S has an inverse f −1 that is defined by

( f −1 � f )(z) = z (z ∈ D)

and
( f � f −1)(w) = w (|w| < r0(h) ; r0( f ) ≥ 1/4

(for details see [12]). It is to be remarked here that for f ∈ S and of the form (1.1), the inverse f −1 may
have an analytic continuation to D, where

f −1(w) = g(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (1.4)

Let Aσ denote the class of functions of the form (1.1) defined on D, for which the function f ∈ A
and its inverse f −1 ≡ g with Taylor series expansion as in (1.4), and both are univalent in D. A function
f ∈ S is said to be bi-univalent in D if there exists a function g ∈ S such that g(z) is an univalent
extension of f −1 to D. Let σ denote the class of all bi-univalent functions in D. The functions

z
1 − z

,

1
2

log
(
1 + z
1 − z

)
and − log(1− z) are in the class σ. It is interesting to note that the famous Koebe function

z
(1 − z)2 is not bi-univalent. Lewin [21] investigated the class of bi-univalent functions σ and obtained

a bound |a2| < 1.51. Further, Brannan and Clunie [5] and Brannan and Taha [6] also worked on certain
subclasses of the bi-univalent function classσ and obtained the bounds for their initial coefficients. The
study of bi-univalent functions gained concentration as well as thrust, mainly due to the investigation
of Srivastava et al. [32]. Brannan and Taha [6] defined the classes S∗σ(γ) and Cσ(γ) of bi-starlike
functions of order γ and bi-convex functions of order γ. The bounds on |an| (n = 2, 3) for the class
S∗σ(γ) and Cσ(γ) (for details see [6]) were established and non-sharp. Subsequent to Brannan and
Taha [6], lots of researchers ( [1], [7], [10–18], [22], [24], [35–37]) in recent times have introduced

AIMS Mathematics Volume 8, Issue 12, 29535–29554.



29537

and investigated several interesting subclasses of the class σ. They have obtained the bounds on the
initial two Taylor-Maclaurin coefficients for the new bi-univalent classes, which they introduced and
identified as non-sharp.

For 0 ≤ γ < 1, let N(γ) denote the class of all functions of the form (1.1) and satisfy the condition
<( f ′(z)) > γ. This is called the class of functions whose derivatives have a positive real part of order
γ.

For 0 ≤ γ < 1, a function f ∈ σ given in (1.1) with f ′(z) , 0 on D is said to be in the classNσ(γ) if

<( f ′(z)) > γ

and
<(g′(w)) > γ.

The class Nσ(γ) was discussed in [32]. For 0 ≤ γ < 1, let F %
σ (γ) denote the class of all functions

f ∈ σ and of the form (1.1) and satisfy the conditions

<
(
f ′(z) + %z f ′′(z)

)
> γ

and
<

(
g′(w) + %wg′′(w)

)
> γ.

For % = 0, F %
σ (γ) ≡ Nσ(γ). This class F %

σ (γ) involving complex order was considered in [33].
For 0 ≤ γ < 1 and τ ≥ 0, let Gτσ(γ) denote the class of all functions f ∈ σ and of the form (1.1) and

satisfy the conditions

<

(
(1 − τ)

f (z)
z

+ τ f ′(z)
)
> γ

and

<

(
(1 − τ)

g(w)
w

+ τg′(w)
)
> γ.

For τ = 1, G1
σ(γ) ≡ Nσ(γ). The class Gτσ(γ) was investigated in [13]. As a matter of fact, it is to be

mentioned that the class of bi-close-to-convex functions of order γ in the sense of Kaplan was studied
by [31], and the class of bi-close-to-convex functions was also studied by Cho et al. [8].

Let k ≥ 2 and 0 ≤ γ < 1. Let Pk(γ) denote the class of functions p, which are analytic and
normalized with p(0) = 1, satisfying the condition

2π∫
0

∣∣∣∣∣∣<(p(z)) − γ
1 − γ

∣∣∣∣∣∣ dθ ≤ kπ,

where z = reiθ ∈ D. The class Pk(γ) was introduced by Padmanabhan and Parvatham [26] (see
also [22]). If γ = 0, we denotePk(0) asPk. Hence, the classPk (defined by Pinchuk [27]) represents the
class of analytic functions p(z) with p(0) = 1, and the function p ∈ Pk will be having a representation

p(z) =

2π∫
0

∣∣∣∣∣∣1 − zeit

1 + zeit

∣∣∣∣∣∣ dµ(t),
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where µ is a real-valued function with a bounded variation satisfying

2π∫
0

dµ(t) = 2 and

2π∫
0

|dµ(t)| ≤ k, k ≥ 2.

Remark 1. P ≡ P2 is the class of analytic functions with a positive real part in D, familiarly called as
the class of Carathéodory functions.

For the class Pk, the following lemma was proved.

Lemma 1. [27] For p ∈ Pk, there exists p1, p2 ∈ P such that

p(z) =

(
k
4

+
1
2

)
p1(z) −

(
k
4
−

1
2

)
p2(z).

Let Rk(γ) represent the class of analytic functions h(z) in D with h(0) = 0, h′(0) = 1 and satisfying

zh′(z)
h(z)

∈ Pk(γ).

This class generalizes the class S∗(γ) of starlike functions of the order γ, investigated by Robertson
[30]. For γ = 0, we get the class Rk(0) ≡ Rk, the class of all functions of bounded radius rotation.
Therefore, the functions h ∈ Rk will be having a representation

h(z) = z exp


2π∫

0

− log
(
1 − zeit

)
dµ(t)

 ,
where µ is a real-valued function with a bounded variation satisfying

2π∫
0

dµ(t) = 2 and

2π∫
0

|dµ(t)| ≤ k, k ≥ 2.

LetVk(γ) denote the class of all analytic functions h(z) in D normalized by h(0) = 0 and h′(0) = 1,
satisfying

1 +
zh′′(z)
h′(z)

∈ Pk(γ), 0 ≤ γ < 1.

For γ = 0, we get the class Vk(0) ≡ Vk, the class of all analytic functions of a bounded boundary
rotation studied by Paatero [25]. Therefore, the functions h ∈ Vk will be having a representation

h′(z) = exp


2π∫

0

− log
(
1 − zeit

)
dµ(t)

 ,
where µ is a real-valued function with a bounded variation satisfying

2π∫
0

dµ(t) = 2 and

2π∫
0

|dµ(t)| ≤ k, k ≥ 2.
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The class Vk(γ) generalizes the class of all convex functions C(γ) of order γ, introduced by
Robertson [30]. An interesting connection for the classesVk(γ) and Rk(γ) with Pk(γ) was established
by Pinchuk [27] and are given by

h(z) ∈ Vk(γ)⇐⇒ 1 +
zh′′(z)
h′(z)

∈ Pk(γ),

h(z) ∈ Rk(γ)⇐⇒
zh′(z)
h(z)

∈ Pk(γ)

and
h(z) ∈ Vk(γ)⇐⇒ zh′(z) ∈ Rk(γ).

Let Sk be the subclass ofVk whose members are univalent in D. It was pointed out by Paatero [25]
that Vk coincides with Sk whenever 2 ≤ k ≤ 4. Pinchuk [27] also proved that functions in Vk are
close-to-convex in D if 2 ≤ k ≤ 4 and, hence, are univalent. Brannan [4] showed thatVk is a subclass

of the class K(γ) of the close-to-convex of order γ =
k
2
− 1. If f ∈ Vk(γ) and n = 2, 3, then the sharp

results are |a2| ≤
k
2

and |a3| ≤
k2 + 2

6
(see [34]).

Lemma 2. [3, 22] If Ψ(z) = 1 +
∑∞

n=1 Bnzn, z ∈ D be such that Ψ ∈ Pk(γ), then

|Bn| ≤ k(1 − γ), n ≥ 1. (1.5)

Let us consider that the functions p, q ∈ Pk(γ), with

p(z) = 1 +

∞∑
n=1

pnzn (1.6)

and

q(z) = 1 +

∞∑
n=1

qnzn. (1.7)

Then, from Lemma 2, we have
|pn| ≤ k(1 − γ),∀ n ≥ 1 (1.8)

and
|qn| ≤ k(1 − γ),∀ n ≥ 1. (1.9)

Lemma 3. [12, Theorem 2.14, p.44] If φ(z) = z +
∑∞

n=2 gnzn, z ∈ D is a starlike function, then

|gn| ≤ n,∀ n ≥ 2. (1.10)

Lemma 4. [19] If φ(z) = z +
∑∞

n=2 gnzn, z ∈ D is a starlike function, then for µ ∈ R,

∣∣∣g3 − µg2
2

∣∣∣ ≤


3 − 4µ for µ ≤ 1
2 ,

1 for 1
2 ≤ µ ≤ 1,

4µ − 3 for µ ≥ 1.

(1.11)
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In the current article, we introduce new classes of bi-univalent functions with bounded boundary
rotation. For these new classes, the authors first obtain two initial coefficient bounds. They also verify
the special cases where the familiar Brannan and Clunie’s conjecture are satisfied. Furthermore, the
famous Fekete-Szegö inequality is obtained for these new classes of functions. The results of this
article gives few interesting corollaries. Apart from a few of the results that generalize the earlier
results existing in the literature, it also improvises the results of Srivastava et al. [32] and Frasin and
Aouf [13].

Presume that if f is given by (1.1), then

g(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · , (1.12)

where g = f −1.
For

φ(z) = z + g2z2 + g3z3 + g4z4 + · · · , (1.13)

one may get
ψ(w) = w − g2w2 + (2g2

2 − g3)w3 − (5g3
2 − 5g2g3 + g4)w4 + · · · . (1.14)

Here, φ−1(w) = ψ(w).
Throughout this article, unless or otherwise stated, g, φ and ψ will have Taylor expansions as in

(1.12), (1.13) and (1.14).

2. Coefficient bounds for Kσ(k, γ)

Definition 1. Suppose 0 ≤ γ < 1, 2 ≤ k ≤ 4 and η ≥ 0. Let f ∈ Aσ given by (1.1) such that f ′(z) , 0
on D. Then, f is said to be η-bi-close-to-star with bounded boundary rotation of order γ if there exists
functions φ, ψ ∈ S∗ satisfying

η

(
z f ′(z)
φ(z)

)
+ (1 − η)

(
f (z)
φ(z)

)
∈ Pk(γ) (2.1)

and

η

(
wg′(w)
ψ(w)

)
+ (1 − η)

(
g(w)
ψ(w)

)
∈ Pk(γ), (2.2)

where g is the analytic continuation of f −1 to D. The class of all such functions is denoted byKη
σ(k, γ).

Remark 2. (i) For η = 1, we get Kη
σ(k, γ) ≡ K1

σ(k, γ) ≡ Kσ(k, γ), the class of bi-close-to-convex
functions with bounded boundary rotation of order γ.

(ii) For η = 1 and γ = 0, we get Kη
σ(k, γ) ≡ K1

σ(k, 0) ≡ Kσ(k), the class of bi-close-to-convex
functions with bounded boundary rotation.

(iii) For η = 1 and k = 2, we get Kη
σ(k, γ) ≡ K1

σ(2, γ) ≡ Kσ(γ), the class of bi-close-to-convex
functions of order γ.

(iv) For η = 0, we get Kη
σ(k, γ) ≡ K0

σ(k, γ) ≡ CS∗σ(k, γ), the class of bi-close-to-star functions with
bounded boundary rotation of order γ.

(v) For η = 0 and γ = 0, we get Kη
σ(k, γ) ≡ K1

σ(k, 0) ≡ CS∗σ(k), the class of bi-close-to-star
functions with bounded boundary rotation.

(vi) For η = 0 and k = 2, we get Kη
σ(k, γ) ≡ K0

σ(2, γ) ≡ CS∗σ(γ), the class of bi-close-to-star
functions of order γ.
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Next, we obtain the initial coefficient bounds and
∣∣∣a3 − µa2

2

∣∣∣ for the class Kη
σ(k, γ).

Theorem 1. Let f given by (1.1) be in the class Kη
σ(k, γ), 0 ≤ γ < 1 and 2 ≤ k ≤ 4, then

|a2| ≤ min

2 + k(1 − γ)
1 + η

,

√
4 + 3k(1 − γ)

1 + 2η

 , (2.3)

|a3| ≤
3 + 3k(1 − γ)

1 + 2η
. (2.4)

Further, if µ is real, then

∣∣∣a3 − µa2
2

∣∣∣ ≤



1
1 + 2η

[
(3 − 4µ) + 3k(1 − γ)(1 − µ)

]
for µ < 0,

1
1 + 2η

[
(3 − 4µ) + k(1 − γ)(3 − 2µ)

]
for 0 ≤ µ <

1
2
,

1
1 + 2η

[
1 + k(1 − γ)(3 − 2µ)

]
for

1
2
≤ µ < 1,

1
1 + 2η

[
(4µ − 3) + k(1 − γ)(2µ − 1)

]
for 1 ≤ µ < 2,

1
1 + 2η

[
(4µ − 3) + 3k(1 − γ)(µ − 1)

]
for µ ≥ 2.

(2.5)

Proof. Let g, φ and ψ be given in the form (1.12), (1.13) and (1.14). Since f ∈ Kη
σ(k, γ), there exists

analytic functions p, q ∈ Pk(γ) with

p(z) = 1 + p1z + p2z2 + · · · (2.6)

and
q(z) = 1 + q1z + q2z2 + · · · , (2.7)

satisfying

η

(
z f ′(z)
φ(z)

)
+ (1 − η)

(
f (z)
φ(z)

)
= p(z) (2.8)

and

η

(
wg′(w)
ψ(w)

)
+ (1 − η)

(
g(w)
ψ(w)

)
= q(w). (2.9)

Therefore,
η
(
z f ′(z)

)
+ (1 − η) f (z) = p(z)φ(z) (2.10)

and
η
(
wg′(w)

)
+ (1 − η)g(w) = q(w)ψ(w). (2.11)

From (2.10) and (2.11), we obtain

(1 + η)a2 = g2 + p1, (2.12)

(1 + 2η)a3 = g3 + g2 p1 + p2, (2.13)

AIMS Mathematics Volume 8, Issue 12, 29535–29554.
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− (1 + η)a2 = −g2 + q1 (2.14)

and
(1 + 2η)(2a2

2 − a3) = −g3 + 2g2
2 − g2q1 + q2. (2.15)

Then, from (2.12) and (2.14), we get p1 = −q1. The addition of (2.13) and (2.15) implies

2(1 + 2η)a2
2 = q2 + p2 + g2(p1 − q1) + 2g2

2. (2.16)

By the relation p1 = −q1 and using Lemma 3, (1.8), (1.9) and applying in (2.16), we get

2(1 + 2η)|a2|
2 ≤ 8 + 6k(1 − γ). (2.17)

Equations (2.12) and (2.17) essentially gives (2.3). Using Lemma 3, (1.8), (1.9) and applying in
(2.13), we have (2.4).

Now, by (2.13) and (2.16) and for all µ ∈ R,

a3 − µa2
2 =

1
1 + 2η

[g3 − µg2
2] +

1
1 + 2η

g2 p1[1 − µ] +
1

2(1 + 2η)
p2[2 − µ] −

1
2(1 + 2η)

q2µ. (2.18)

Hence,

|a3 − µa2
2| ≤

1
1 + 2η

|g3 − µg2
2| +

2k(1 − γ)
1 + 2η

|1 − µ| +
k(1 − γ)

2(1 + 2η)
[|2 − µ| + |µ|]. (2.19)

By using Lemma 4, we get (2.5). This completes the proof of Theorem 1. �

For the particular choice of η = 1, Theorem 1 gives the following coefficient estimates for the class
Kσ(k, γ) and is stated as a corollary below.

Corollary 1. Let 0 ≤ γ < 1 and 2 ≤ k ≤ 4. Let f given by (1.1) be in the class Kσ(k, γ), then

|a2| ≤ min

2 + k(1 − γ)
2

,

√
4 + 3k(1 − γ)

3

 =

√
4 + 3k(1 − γ)

3
, (2.20)

|a3| ≤ 1 + k(1 − γ) (2.21)

and

∣∣∣a3 − µa2
2

∣∣∣ ≤


1
3

[
(3 − 4µ) + 3k(1 − γ)(1 − µ)

]
for µ < 0,

1
3

[
(3 − 4µ) + k(1 − γ)(3 − 2µ)

]
for 0 ≤ µ <

1
2
,

1
3

[
1 + k(1 − γ)(3 − 2µ)

]
for

1
2
≤ µ < 1,

1
3

[
(4µ − 3) + k(1 − γ)(2µ − 1)

]
for 1 ≤ µ < 2,

1
3

[
(4µ − 3) + 3k(1 − γ)(µ − 1)

]
for µ ≥ 2.

(2.22)

Remark 3. It is evident to note that the familiar Brannan and Clunie’s conjecture is true for Kσ(k, γ),
the class of bi-close-to-convex functions with a bounded boundary rotation of order γ, for all 2 ≤ k ≤ 4

if
3k − 2

3k
≤ γ < 1.
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For the particular choice of η = 0, Theorem 1 gives the following coefficient estimates for the class
CS∗σ(k, γ) and is stated as a corollary below.

Corollary 2. Let f given by (1.1) be in the class CS∗σ(k, γ). Further, if 0 ≤ γ < 1 and 2 ≤ k ≤ 4, then

|a2| ≤ min
{
2 + k(1 − γ),

√
4 + 3k(1 − γ)

}
=

√
4 + 3k(1 − γ), (2.23)

|a3| ≤ 3 + 3k(1 − γ) (2.24)

and

∣∣∣a3 − µa2
2

∣∣∣ ≤


(3 − 4µ) + 3k(1 − γ)(1 − µ) for µ < 0,

(3 − 4µ) + k(1 − γ)(3 − 2µ) for 0 ≤ µ <
1
2
,

1 + k(1 − γ)(3 − 2µ) for
1
2
≤ µ < 1,

(4µ − 3) + k(1 − γ)(2µ − 1) for 1 ≤ µ < 2,
(4µ − 3) + 3k(1 − γ)(µ − 1) for µ ≥ 2.

(2.25)

For the particular choice of γ = 0, we denote Kη
σ(k, γ) by Kη

σ(k). For the class Kη
σ(k), Theorem 1

reduces the following corollary.

Corollary 3. If f given by (1.1) belong to the class Kη
σ(k) and 2 ≤ k ≤ 4, then

|a2| ≤ min

2 + k
1 + η

,

√
4 + 3k
1 + 2η


|a3| ≤

3(1 + k)
1 + 2η

and

∣∣∣a3 − µa2
2

∣∣∣ ≤



1
1 + 2η

[
(3 − 4µ) + 3k(1 − µ)

]
for µ < 0,

1
1 + 2η

[
(3 − 4µ) + k(3 − 2µ)

]
for 0 ≤ µ <

1
2
,

1
1 + 2η

[
1 + k(3 − 2µ)

]
for

1
2
≤ µ < 1,

1
1 + 2η

[
(4µ − 3) + k(2µ − 1)

]
for 1 ≤ µ < 2,

1
1 + 2η

[
(4µ − 3) + 3k(µ − 1)

]
for µ ≥ 2.

If we choose the function φ(z) = z, we can get the following Theorem 2 very similar to that of
Theorem 1. For the choice of φ(z) = z, let us denote the class Kη

σ(k, γ) by Kη
σ[k, γ]. Indeed, the class

K
η
σ[k, γ] will consist of all functions f ∈ σ of the form (1.1) and satisfy the conditions

(1 − η)
f (z)
z

+ η f ′(z) ∈ Pk(γ)

and
(1 − η)

g(w)
w

+ ηg′(w) ∈ Pk(γ),

where g is the analytic continuation of f −1 to D. However, for obtaining the bounds for the class
K

η
σ[k, γ], the calculation needs to be reworked and we omit the details involved.
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Theorem 2. If f given by (1.1) belong to the class Kη
σ[k, γ], 0 ≤ γ < 1 and 2 ≤ k ≤ 4, then

|a2| ≤ min

k(1 − γ)
1 + η

,

√
k(1 − γ)
1 + 2η

 , (2.26)

|a3| ≤
k(1 − γ)
1 + 2η

, (2.27)

|a3 − 2a2
2| ≤

k(1 − γ)
1 + 2η

(2.28)

and
|a3 − a2

2| ≤
k(1 − γ)
1 + 2η

. (2.29)

Remark 4. For the choice of k = 2, Theorem 2 improves the bound of |a3| and verifies the bound of
|a2|, obtained by Frasin and Aouf [13].

For the particular choice of k = 2, we denote Kη
σ[k, γ] by Kη

σ[γ]. For the class Kη
σ[γ], Theorem 2

reduces the following corollary.

Corollary 4. If f given by (1.1) belong to the class Kη
σ[γ] and 0 ≤ γ < 1, then

|a2| ≤ min

2(1 − γ)
1 + η

,

√
2(1 − γ)
1 + 2η

 ,
|a3| ≤

2(1 − γ)
1 + 2η

≤
(1 − γ)(5 − 3γ)

1 + 2η
,

|a3 − 2a2
2| ≤

2(1 − γ)
1 + 2η

(2.30)

and
|a3 − a2

2| ≤
2(1 − γ)
1 + 2η

. (2.31)

Remark 5. (i) Since

|a3| ≤
2(1 − γ)

3
≤

(1 − γ)(5 − 3γ)
3

,

Corollary 4 verifies that the bound of |a3| is less than that of the bound given by Srivastava et al. [32].
(ii) For the particular choice of η = 1 in Theorem 2, we have the class K1

σ[k, γ] ≡ Nσ(k, γ),
consisting of all functions f ∈ σ of the form (1.1) and satisfying the conditions

f ′(z) ∈ Pk(γ)

and
g′(w) ∈ Pk(γ).

Finally, we will verify whether the Brannan and Clunie’s conjecture is satisfied for the class
K

η
σ(k, γ), and it is stated in the following corollary.

Corollary 5. If f ∈ Kη
σ(k, γ), then for

3k + 2 − 4η
3k

≤ γ < 1, η ≥ 1 and 2 ≤ k ≤ 4,

|a2| ≤
√

2.
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3. Coefficient bounds forMα
σ(k, γ)

We start the section by introducing the definition of α-bi-convex function of a bounded boundary
rotation of order γ.

Definition 2. Suppose 0 ≤ γ < 1 and 2 ≤ k ≤ 4. Let α be real. A function f given by (1.1) is said to be
α-bi-convex function with a bounded boundary rotation of order γ with f (z) · f ′(z) , 0 if for z ∈ D,

(1 − α)
z f ′(z)
f (z)

+ α

(
1 +

z f ′′(z)
f ′(z)

)
∈ Pk(γ) (3.1)

and

(1 − α)
wg′(w)
g(w)

+ α

(
1 +

wg′′(w)
g′(w)

)
∈ Pk(γ), (3.2)

where g is the analytic continuation of f −1 to D. The class of all α-bi-convex functions with a bounded
boundary rotation of order γ are denoted byMα

σ(k, γ).

Remark 6. (i) For k = 2, we getMα
σ(2, γ) ≡ Mα

σ(γ), the class of α-bi-convex functions of order γ.
(ii) For α = 0, we getMα

σ(k, γ) ≡ M0
σ(k, γ) ≡ S∗σ(k, γ) [22], the class of bi-starlike functions with

bounded boundary rotation of order γ.
(iii) For α = 0 and k = 2, we getMα

σ(k, γ) ≡ M0
σ(2, γ) ≡ S∗σ(γ), the class of bi-starlike functions of

order γ.
(iv) For α = 1, we getMα

σ(k, γ) ≡ M1
σ(k, γ) ≡ Cσ(k, γ) [22], the class of bi-convex functions with

bounded boundary rotation of order γ.
(v) For α = 1 and k = 2, we getMα

σ(k, γ) ≡ M1
σ(2, γ) ≡ Cσ(γ), the class of bi-convex functions of

order γ.

Theorem 3. If f given by (1.1) belong to the classMα
σ(k, γ), 0 ≤ γ < 1 and 2 ≤ k ≤ 4, then

|a2| ≤

√
k(1 − γ)

1 + α
, (3.3)

|a3| ≤
k(1 − γ)

1 + α
, (3.4)

|a3 − ρa2
2| ≤

k(1 − γ)
2(1 + 2α)

(3.5)

and
|a3 − δa2

2| ≤
k(1 − γ)

2(1 + 2α)
, (3.6)

where ρ =
3 + 5α

2(1 + 2α)
and δ =

1 + 3α
2(1 + 2α)

.

Proof. Let g be given in the form (1.12). Since f ∈ Mα
σ(k, γ), there exists analytic functions p, q ∈

Pk(γ) with
p(z) = 1 + p1z + p2z2 + · · · (3.7)

and
q(z) = 1 + q1z + q2z2 + · · · , (3.8)

AIMS Mathematics Volume 8, Issue 12, 29535–29554.



29546

satisfying

(1 − α)
z f ′(z)
f (z)

+ α

(
1 +

z f ′′(z)
f ′(z)

)
= p(z) (3.9)

and

(1 − α)
wg′(w)
g(w)

+ α

(
1 +

wg′′(w)
g′(w)

)
= q(w). (3.10)

Therefore,
(1 − α)z f ′(z) f ′(z) + α

(
f ′(z) + z f ′′(z)

)
f (z) = p(z) f ′(z) f (z) (3.11)

and
(1 − α)wg′(w)g′(w) + α

(
g′(w) + wg′′(w)

)
g(w) = q(w)g′(w)g(w). (3.12)

From (3.11) and (3.12) we get
(1 + α)a2 = p1, (3.13)

2(1 + 2α)a3 = (1 + 3α)a2
2 + p2, (3.14)

− (1 + α)a2 = q1 (3.15)

and
2(1 + 2α)(2a2

2 − a3) + 2a2
2 = −3a2q1 + q2. (3.16)

Then, from (3.13) and (3.15), we get p1 = −q1. The addition of (3.14) and (3.16) implies

2(1 + α)a2
2 = p2 + q2. (3.17)

Now, using (1.8) and (1.9) in (3.17) we have

|a2|
2 ≤

k(1 − γ)
1 + α

. (3.18)

This essentially gives (3.3). An application of (3.18), (1.8) and (1.9) in (3.14) at once gives (3.4).
Now, (3.14) can be written as

a3 −
1 + 3α

2(1 + 2α)
a2

2 =
p2

2(1 + 2α)
. (3.19)

Furthermore,

|a3 − δa2
2| =

|p2|

2(1 + 2α)
≤

k(1 − γ)
2(1 + 2α)

, (3.20)

where
δ =

1 + 3α
2(1 + 2α)

. (3.21)

Now, (3.16) can be written as

a3 −
3 + 5α

2(1 + 2α)
a2

2 =
−q2

2(1 + 2α)
. (3.22)

Furthermore,

|a3 − ρa2
2| =

|q2|

2(1 + 2α)
≤

k(1 − γ)
2(1 + 2α)

, (3.23)

where
ρ =

3 + 5α
2(1 + 2α)

. (3.24)

This completes the proof of Theorem 3. �
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For the particular choice of the function α = 0 in Theorem 3, we have the following coefficient
bounds for the class S∗σ(k, γ).

Corollary 6. Let f given by (1.1) be in the class S∗σ(k, γ), 0 ≤ γ < 1 and 2 ≤ k ≤ 4, then

|a2| ≤
√

k(1 − γ),

|a3| ≤ k(1 − γ),∣∣∣∣∣a3 −
1
2

a2
2

∣∣∣∣∣ ≤ k(1 − γ)
2

and ∣∣∣∣∣a3 −
3
2

a2
2

∣∣∣∣∣ ≤ k(1 − γ)
2

.

Remark 7. For the choice of k = 2, Corollary 6 verifies the coefficient bounds of |a2| and |a3|, obtained
by Mishra and Soren [23], for the class of bi-starlike functions of order γ.

For the particular choice of the function α = 1 in Theorem 3, we have the following coefficient
estimates for the class Cσ(k, γ).

Corollary 7. Let f given by (1.1) be in the class Cσ(k, γ), 0 ≤ γ < 1 and 2 ≤ k ≤ 4, then

|a2| ≤

√
k(1 − γ)

2
,

|a3| ≤
k(1 − γ)

2
,∣∣∣∣∣a3 −

1
2

a2
2

∣∣∣∣∣ ≤ k(1 − γ)
6

and ∣∣∣∣∣a3 −
3
2

a2
2

∣∣∣∣∣ ≤ k(1 − γ)
6

.

4. Coefficient bounds for S∗σ(k, β, γ)

Definition 3. Suppose 0 ≤ γ < 1 and 2 ≤ k ≤ 4. Let β be real. A function f given by (1.1) is said to be
in the class S∗σ(k, β, γ) if it satisfies the conditions

z f ′(z)
f (z)

+ β
z2 f ′′(z)

f (z)
∈ Pk(γ) (4.1)

and
wg′(w)
g(w)

+ β
w2g′′(w)

g(w)
∈ Pk(γ), (4.2)

where g is the analytic continuation of f −1 to D.

A similar type of the class with the left hand side expression involving subordination was studied
in [1], [9] and [38].
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Remark 8. (i) For β = 0, we get S∗σ(k, β, γ) ≡ S∗σ(k, 0, γ) ≡ S∗σ(k, γ), the class of bi-starlike functions
with bounded boundary rotation of order γ.

(ii) For β = 0 and k = 2, we get S∗σ(k, β, γ) ≡ S∗σ(2, 0, γ) ≡ S∗σ(γ), the class of bi-starlike functions
of order γ.

(iii) For β = 0, k = 2 and γ = 0, we get S∗σ(k, β, γ) ≡ S∗σ(2, 0, 0) ≡ S∗σ, the class of bi-starlike
functions.

Theorem 4. Let f given by (1.1) be in the class S∗σ(k, β, γ), 0 ≤ γ < 1 and 2 ≤ k ≤ 4, then

|a2| ≤

√
k(1 − γ)
1 + 4β

, (4.3)

|a3| ≤
k(1 − γ)
1 + 4β

, (4.4)

|a3 − χa2
2| ≤

k(1 − γ)
2(1 + 3β)

(4.5)

and
|a3 − νa2

2| ≤
k(1 − γ)

2(1 + 3β)
, (4.6)

where χ =
3 + 10β

2(1 + 3β)
and ν =

1 + 2β
2(1 + 3β)

.

Proof. Let g be given in the form (1.12). Since f ∈ S∗σ(k, β, γ), there exists analytic functions p, q ∈
Pk(γ) with

p(z) = 1 + p1z + p2z2 + · · · (4.7)

and
q(z) = 1 + q1z + q2z2 + · · · , (4.8)

satisfying
z f ′(z)
f (z)

+ β
z2 f ′′(z)

f (z)
= p(z) (4.9)

and
wg′(w)
g(w)

+ β
w2g′′(w)

g(w)
= q(w). (4.10)

Therefore,
z f ′(z) + βz2 f ′′(z) = p(z) f (z) (4.11)

and
wg′(w) + βw2g′′(w) = q(w)g(w). (4.12)

From the Eqs (4.11) and (4.12), we obtain

(1 + 2β)a2 = p1, (4.13)

2(1 + 3β)a3 = a2 p1 + p2, (4.14)
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− (1 + 2β)a2 = q1 (4.15)

and
2(1 + 3β)(2a2

2 − a3) = −a2q1 + q2. (4.16)

Then, from (4.13) and (4.15), we get p1 = −q1. By an addition of (4.14) and (4.16), we get

4(1 + 3β)a2
2 = a2(p1 − q1) + p2 + q2. (4.17)

Now, applying relation p1 = −q1 in (4.17) and using Eq (4.13), we get

2(1 + 4β)a2
2 = p2 + q2. (4.18)

Now, using (1.8) and (1.9) in (4.18), we have

|a2|
2 ≤

k(1 − γ)
1 + 4β

. (4.19)

This essentially gives (4.3). An application of (4.13), (1.8) and (1.9) in (4.14) at once gives (4.4).
Now, Eq (4.16) can be written as

a3 −
3 + 10β

2(1 + 3β)
a2

2 =
−q2

2(1 + 3β)
. (4.20)

Furthermore,

|a3 − χa2
2| =

|q2|

2(1 + 3β)
≤

k(1 − γ)
2(1 + 3β)

, (4.21)

where
χ =

3 + 10β
2(1 + 3β)

. (4.22)

Thus, Eq (4.14) can be written as

a3 −
1 + 2β

2(1 + 3β)
a2

2 =
p1

2(1 + 3β)
. (4.23)

Furthermore,

|a3 − νa2
2| =

|p1|

2(1 + 3β)
≤

k(1 − γ)
2(1 + 3β)

, (4.24)

where
ν =

1 + 2β
2(1 + 3β)

. (4.25)

This completes the proof of Theorem 4. �

Remark 9. (i) For β = 0, S∗σ(k, 0, γ) ≡ S∗σ(k, γ) and Theorem 4 reduce to Corollary 6.
(ii) For β = 0 and k = 2, Theorem 4 reduces to the coefficient bounds of |a2| and |a3|, given by

Mishra and Soren [23].

For β = 0, γ = 0 and k = 2, Theorem 4 reduces to the following corollary as stated below.
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Corollary 8. Let f given by (1.1) be in the class S∗σ(2, 0, 0) ≡ S∗σ, then

|a2| ≤
√

2,

|a3| ≤ 2,∣∣∣∣∣a3 −
3
2

a2
2

∣∣∣∣∣ ≤ 1

and ∣∣∣∣∣a3 −
1
2

a2
2

∣∣∣∣∣ ≤ 1.

5. Coefficient bounds for class F %
σ (k, γ)

Definition 4. Suppose 0 ≤ γ < 1, % ≥ 0 and 2 ≤ k ≤ 4. Let F %
σ (k, γ) denote the class of all functions

f ∈ σ of the form (1.1) and satisfy the conditions

f ′(z) + %z f ′′(z) ∈ Pk(γ) (5.1)

and
g′(w) + %wg′′(w) ∈ Pk(γ), (5.2)

where g is the analytic continuation of f −1 to D.

Theorem 5. Let f given by (1.1) be in the class F %
σ (k, γ), % ≥ 0, 0 ≤ γ < 1 and 2 ≤ k ≤ 4, then

|a2| ≤

√
k(1 − γ)

3(1 + 2%)
, (5.3)

|a3| ≤
k(1 − γ)

3(1 + 2%)
(5.4)

and
|a3 − 2a2

2| ≤
k(1 − γ)

3(1 + 2%)
. (5.5)

Proof. Let g be given in the form (1.12). Since f ∈ F %
σ (k, γ), there exists analytic functions p, q ∈ Pk(γ)

with
p(z) = 1 + p1z + p2z2 + · · · (5.6)

and
q(z) = 1 + q1z + q2z2 + · · · , (5.7)

satisfying
f ′(z) + %z f ′′(z) = p(z) (5.8)

and
g′(w) + %wg′′(w) = q(w). (5.9)

From (5.8) and (5.9), we obtain
2(1 + %)a2 = p1, (5.10)
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3(1 + 2%)a3 = p2, (5.11)

− 2(1 + %)a2 = q1 (5.12)

and
3(1 + 2%)(2a2

2 − a3) = q2. (5.13)

Then, from (5.11) and (5.13), we get

a2
2 =

p2 + q2

6(1 + %)
. (5.14)

Now, using (1.8) and (1.9) in (5.14), we have

|a2|
2 ≤

k(1 − γ)
3(1 + %)

. (5.15)

This essentially yields (5.3). An application of (1.9) in (5.11) at once gives (5.4). Now, Eq (5.13)
can be written as

a3 − 2a2
2 =

−q2

3(1 + 2%)
. (5.16)

An application of (5.12) in (5.16) gives (5.5). This completes the proof of Theorem 5. �

Remark 10. For k = 2, Theorem 5 verifies the |a2| bound and improves the bound of |a3| obtained
in [33].

Concluding remarks and observations

In this article, we investigated the estimates of second and third Taylor–Maclaurin coefficients for
new subclasses of bi-univalent functions of order γ with bounded boundary rotation. Also, interesting
Fekete-Szegö coefficient estimates for functions in these subclasses were obtained. The authors have
verified the special cases where the familiar Brannan and Clunie’s conjecture were satisfied. Interesting
remarks on the main results including improvements of the earlier bounds were also given. Apart from
these remarks, which are given in the present article, more corollaries and remarks can be stated for
the choice of γ = 0, and those details are omitted.
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25. V. Paatero, Über Gebiete von beschrankter Randdrehung, Ann. Acad. Sci. Fenn. Ser. A., 37 (1933),
9.

26. K. S. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary
rotation, Ann. Polon. Math., 31 (1975/76), 311–323. https://doi.org/10.4064/ap-31-3-311-323

27. B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math., 10 (1971), 6–16.
https://doi.org/10.1007/BF02771515

28. M. O. Reade, On close-to-convex univalent functions, Michigan Math. J., 3 (1955), 59–62.

29. M. O. Reade, The coefficients of close-to-convex functions, Duke Math. J., 23 (1956), 459–462.

30. M. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374–408.
https://doi.org/10.2307/1968451

31. S. Sivasubramanian, R. Sivakumar, S. Kanas, S. A. Kim, Verification of Brannan and Clunie’s
conjecture for certain subclasses of bi-univalent functions, Ann. Polon. Math., 113 (2015), 295–
304. https://doi.org/10.4064/ap113-3-6

AIMS Mathematics Volume 8, Issue 12, 29535–29554.

http://dx.doi.org/https://doi.org/10.1016/j.joems.2012.08.020
http://dx.doi.org/http://projecteuclid.org/euclid.mmj/1028988895
http://dx.doi.org/https://doi.org/10.2307/2035949
http://dx.doi.org/https://doi.org/10.2307/2046556
http://dx.doi.org/https://doi.org/10.2307/2035225
http://dx.doi.org/https://doi.org/10.3934/math.2020215
http://dx.doi.org/https://doi.org/10.1007/BF00247676
http://dx.doi.org/https://doi.org/10.4064/ap-31-3-311-323
http://dx.doi.org/https://doi.org/10.1007/BF02771515
http://dx.doi.org/https://doi.org/10.2307/1968451
http://dx.doi.org/https://doi.org/10.4064/ap113-3-6


29554

32. H. M. Srivastava, A. K. Mishra P. Gochhayat, Certain subclasses of analytic and bi-univalent
functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009

33. H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic
and bi-univalent functions, J. Egyptian Math. Soc., 23 (2015), 242–246.
https://doi.org/10.1016/j.joems.2014.04.002

34. D. K. Thomas, On the coefficients of bounded boundary rotation, Proc. Amer. Math. Soc., 36
(1972), 123–129. https://doi.org/10.1090/S0002-9939-1972-0308384-2

35. Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass
of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994.
https://doi.org/10.1016/j.aml.2011.11.013

36. Q. H. Xu, H. M. Srivastava, H. G. Xiao, A certain general subclass of analytic and bi-univalent
functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–
11465. https://doi.org/10.1016/j.amc.2012.05.034

37. Q. H. Xu, H. M. Srivastava, L. Zhou, A certain subclass of analytic and close-to-convex functions,
Appl. Math. Lett., 24 (2011), 396–401. https://doi.org/10.1016/j.aml.2010.10.037
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