Research article

Application of aggregated control functions for approximating $ \mathscr{C} $-Hilfer fractional differential equations

  • Received: 04 August 2023 Revised: 18 September 2023 Accepted: 21 September 2023 Published: 11 October 2023
  • MSC : 39B62, 46L05, 46L57, 47B47, 47H10

  • The main issue we are studying in this paper is that of aggregation maps, which refers to the process of combining various input values into a single output. We apply aggregated special maps on Mittag-Leffler-type functions in one parameter to get diverse approximation errors for fractional-order systems in Hilfer sense using an optimal method. Indeed, making use of various well-known special functions that are initially chosen, we establish a new class of matrix-valued fuzzy controllers to evaluate maximal stability and minimal error. An example is given to illustrate the numerical results by charts and tables.

    Citation: Safoura Rezaei Aderyani, Reza Saadati, Donal O'Regan, Fehaid Salem Alshammari. Application of aggregated control functions for approximating $ \mathscr{C} $-Hilfer fractional differential equations[J]. AIMS Mathematics, 2023, 8(11): 28010-28032. doi: 10.3934/math.20231433

    Related Papers:

  • The main issue we are studying in this paper is that of aggregation maps, which refers to the process of combining various input values into a single output. We apply aggregated special maps on Mittag-Leffler-type functions in one parameter to get diverse approximation errors for fractional-order systems in Hilfer sense using an optimal method. Indeed, making use of various well-known special functions that are initially chosen, we establish a new class of matrix-valued fuzzy controllers to evaluate maximal stability and minimal error. An example is given to illustrate the numerical results by charts and tables.



    加载中


    [1] S. R. Aderyani, R. Saadati, M. Feckan, The Cadariu-Radu method for existence, uniqueness and gauss hypergeometric stability of $\Omega$-Hilfer fractional differential equations, Mathematics, 9 (2021), 1408. https://doi.org/10.3390/math9121408 doi: 10.3390/math9121408
    [2] S. R. Aderyani, R. Saadati, X. J. Yang, Radu-Mihet method for UHML stability for a class of $ \xi$-Hilfer fractional differential equations in matrix valued fuzzy Banach spaces, Math. Methods Appl. Sci., 44 (2021), 14619–14631. https://doi.org/10.1002/mma.7730 doi: 10.1002/mma.7730
    [3] S. R. Aderyani, R. Saadati, D. O'Regan, T. Abdeljawad, UHML stability of a class of $\Delta$-Hilfer FDEs via CRM, AIMS Mathematics, 7 (2022), 5910–5919. https://doi.org/10.3934/math.2022328 doi: 10.3934/math.2022328
    [4] J. V. D. C. Sousa, E. C. D. Olivera, On the $ \psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [6] S. R. Aderyani, R. Saadati, T. Abdeljawad, N. Mlaiki, Multi-stability of non homogenous vector-valued fractional differential equations in matrix-valued Menger spaces, Alexandria Eng. J., 61 (2022), 10913–10923. https://doi.org/10.1016/j.aej.2022.03.053 doi: 10.1016/j.aej.2022.03.053
    [7] S. R. Aderyani, R. Saadati, C. Li, T. M. Rassias, C. Park, Special functions and multi-stability of the Jensen type random operator equation in $ C^{*} $-algebras via fixed point, J. Inequal. Appl., 2023 (2023), 35. https://doi.org/10.1186/s13660-023-02942-0 doi: 10.1186/s13660-023-02942-0
    [8] M. Grabisch, J. L. Marichal, R. Mesiar, E. Pap, Aggregation functions, Cambridge University Press, 2009. https://doi.org/10.1017/CBO9781139644150
    [9] S. Harikrishnan, E. M. Elsayed, K. Kanagarajan, D. Vivek, A study of Hilfer-Katugampola type pantograph equations with complex order, Examples Counterexamples, 2 (2022), 100045. https://doi.org/10.1016/j.exco.2021.100045 doi: 10.1016/j.exco.2021.100045
    [10] T. T. Phong, L. D. Long, Well-posed results for nonlocal fractional parabolic equation involving Caputo-Fabrizio operator, J. Math. Comput. Sci., 26 (2022), 357–367. https://doi.org/10.22436/jmcs.026.04.04 doi: 10.22436/jmcs.026.04.04
    [11] M. I. Youssef, Generalized fractional delay functional equations with Riemann-Stieltjes and infinite point nonlocal conditions, J. Math. Comput. Sci., 24 (2022), 33–48. https://doi.org/10.22436/jmcs.024.01.04 doi: 10.22436/jmcs.024.01.04
    [12] I. Koca, H. Bulut, E. Akcetin, A different approach for behavior of fractional plant virus model, J. Nonlinear Sci. Appl., 15 (2022), 186–202. https://doi.org/10.22436/jnsa.015.03.02 doi: 10.22436/jnsa.015.03.02
    [13] E. C. D. Oliveira, J. V. D. C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 111. https://doi.org/10.1007/s00025-018-0872-z doi: 10.1007/s00025-018-0872-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(706) PDF downloads(52) Cited by(6)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog