Research article Special Issues

Problems concerning sharp coefficient functionals of bounded turning functions

  • Received: 02 August 2023 Revised: 01 September 2023 Accepted: 08 September 2023 Published: 27 September 2023
  • MSC : 05A30, 11B65, 30C45, 47B38

  • The work presented in this article has been motivated by the recent research going on the Hankel determinant bounds and their related consequences, as well as the techniques used previously by many different authors. We aim to establish a new subfamily of holomorphic functions connected with the hyperbolic tangent function with bounded boundary rotation. We investigate the sharp estimate of the third Hankel determinant for this newly defined family of functions. Moreover, for the defined functions family, the Krushkal inequality, the first four initial sharp bounds of the logarithmic coefficients and the sharp second Hankel determinant of the logarithmic coefficients are given.

    Citation: Muhammmad Ghaffar Khan, Wali Khan Mashwani, Jong-Suk Ro, Bakhtiar Ahmad. Problems concerning sharp coefficient functionals of bounded turning functions[J]. AIMS Mathematics, 2023, 8(11): 27396-27413. doi: 10.3934/math.20231402

    Related Papers:

  • The work presented in this article has been motivated by the recent research going on the Hankel determinant bounds and their related consequences, as well as the techniques used previously by many different authors. We aim to establish a new subfamily of holomorphic functions connected with the hyperbolic tangent function with bounded boundary rotation. We investigate the sharp estimate of the third Hankel determinant for this newly defined family of functions. Moreover, for the defined functions family, the Krushkal inequality, the first four initial sharp bounds of the logarithmic coefficients and the sharp second Hankel determinant of the logarithmic coefficients are given.



    加载中


    [1] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992,157–169.
    [2] N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232. https://doi.org/10.1007/s41980-018-0127-5 doi: 10.1007/s41980-018-0127-5
    [3] L. A. Wani, A. Swaminathan, Starlike and convex functions associated with a Nephroid domain, Bull. Malays. Math. Sci. Soc., 44 (2021), 79–104. https://doi.org/10.1007/s40840-020-00935-6 doi: 10.1007/s40840-020-00935-6
    [4] J. Sokól, S. Kanas, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105.
    [5] K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with cardioid, Afr. Mat., 27 (2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7
    [6] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. https://doi.org/10.1007/s40840-014-0026-8 doi: 10.1007/s40840-014-0026-8
    [7] R. K. Raina, J. Sokól, On Coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427–1433. https://doi.org/10.15672/HJMS.2015449676 doi: 10.15672/HJMS.2015449676
    [8] N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, H. M. Srivastava, Starlike functions related to the Bell numbers, Symmetry, 11 (2019), 219. https://doi.org/10.3390/sym11020219 doi: 10.3390/sym11020219
    [9] J. Dziok, R. K. Raina, J. Sokól, On certain subclasses of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Model., 57 (2013), 1203–1211. https://doi.org/10.1016/j.mcm.2012.10.023 doi: 10.1016/j.mcm.2012.10.023
    [10] S. Kanas, D. Răducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [11] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108–112.
    [12] C. Pommerenke, J. Gerd, Univalent functions, Göttingen: Vandenhoeck und Ruprecht, 1975.
    [13] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12.
    [14] W. Keopf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89–95. https://doi.org/10.2307/2046556 doi: 10.2307/2046556
    [15] M. G. Khan, B. Ahmad, G. M. Moorthy, R. Chinram, W. K. Mashwani, Applications of modified Sigmoid functions to a class of starlike functions, J. Funct. Space., 8 (2020), 8844814. https://doi.org/10.1155/2020/8844814 doi: 10.1155/2020/8844814
    [16] W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc., 3 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77 doi: 10.1112/plms/s3-18.1.77
    [17] J. W. Noonan, D. K. Thomas, On the Second Hankel determinant of a really mean p-valent functions, T. Am. Math. Soc., 223 (1976), 337–346. https://doi.org/10.2307/1997533 doi: 10.2307/1997533
    [18] H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turk. J. Math., 40 (2016), 679–687. https://doi.org/10.3906/mat-1505-3 doi: 10.3906/mat-1505-3
    [19] L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry, 12 (2020), 291. https://doi.org/10.3390/sym12020291 doi: 10.3390/sym12020291
    [20] M. Liu, J. Xu, M. Yang, Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal., 2014 (2014), 603180. https://doi.org/10.1155/2014/603180 doi: 10.1155/2014/603180
    [21] M. G. Khan, B. Khan, F. M. O. Tawfiq, J. Ro, Zalcman functional and majorization results for certain subfamilies of holomorphic functions, Axioms, 12 (2023), 868. https://doi.org/10.3390/axioms12090868 doi: 10.3390/axioms12090868
    [22] K. O. Babalola, On $H_{3}\left(1\right) $ Hankel determinant for some classes of univalent functions, Inequality Theory and Application, arXiv: 0910.3779. https://doi.org/10.48550/arXiv.0910.3779
    [23] L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal, S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., 5 (2021), 137. https://doi.org/10.3390/fractalfract5040137 doi: 10.3390/fractalfract5040137
    [24] H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, et al., Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli, Mathematics, 7 (2019), 848. https://doi.org/10.3390/math7090848 doi: 10.3390/math7090848
    [25] M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with $k$-Fibonacci numbers, Symmetry, 12 (2020), 1043. https://doi.org/10.3390/sym12061043 doi: 10.3390/sym12061043
    [26] M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function, AIMS Mathematics, 9 (2023), 21993–22008. https://doi.org/10.3934/math.20231121 doi: 10.3934/math.20231121
    [27] M. G. Khan, N. E. Cho, T. G. Shaba, B. Ahmad, W. K. Mashwani, Coefficient functionals for a class of bounded turning functions related to modified sigmoid function, AIMS Mathematics, 7 (2022), 3133–3149. https://doi.org/10.3934/math.2022173 doi: 10.3934/math.2022173
    [28] K. Allah, S. Zainab, M. Arif, M. Darus, M. Shutaywi, Radiusproblems for starlike functions associated with the tan hyperbolic function, J. Funct. Space. 2021 (2021), 9967640. https://doi.org/10.1155/2021/9967640
    [29] R. J. Libera, E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225–230.
    [30] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12.
    [31] K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27 (2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7
    [32] M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), 1615–1630. https://doi.org/10.1515/math-2019-0132 doi: 10.1515/math-2019-0132
    [33] V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, CR Math., 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003 doi: 10.1016/j.crma.2015.03.003
    [34] S. L. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv: 1408.1948. https://doi.org/10.48550/arXiv.1408.1948
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1000) PDF downloads(69) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog