Research article Special Issues

An efficient linearly-implicit energy-preserving scheme with fast solver for the fractional nonlinear wave equation

  • Received: 21 June 2023 Revised: 07 August 2023 Accepted: 23 August 2023 Published: 18 September 2023
  • MSC : 65M06, 65M70

  • The paper considers the Hamiltonian structure and develops efficient energy-preserving schemes for the nonlinear wave equation with a fractional Laplacian operator. To this end, we first derive the Hamiltonian form of the equation by using the fractional variational derivative and then applying the finite difference method to the original equation to obtain a semi-discrete Hamiltonian system. Furthermore, the scalar auxiliary variable method and extrapolation technique is used to approximate a semi-discrete system to construct an efficient linearly-implicit energy-preserving scheme. A fast solver for the proposed scheme is presented to reduce CPU consumption. Ample numerical results are given to finally confirm the efficiency and conservation of the developed scheme.

    Citation: Tingting Ma, Yuehua He. An efficient linearly-implicit energy-preserving scheme with fast solver for the fractional nonlinear wave equation[J]. AIMS Mathematics, 2023, 8(11): 26574-26589. doi: 10.3934/math.20231358

    Related Papers:

  • The paper considers the Hamiltonian structure and develops efficient energy-preserving schemes for the nonlinear wave equation with a fractional Laplacian operator. To this end, we first derive the Hamiltonian form of the equation by using the fractional variational derivative and then applying the finite difference method to the original equation to obtain a semi-discrete Hamiltonian system. Furthermore, the scalar auxiliary variable method and extrapolation technique is used to approximate a semi-discrete system to construct an efficient linearly-implicit energy-preserving scheme. A fast solver for the proposed scheme is presented to reduce CPU consumption. Ample numerical results are given to finally confirm the efficiency and conservation of the developed scheme.



    加载中


    [1] D. Cohen, E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT, 51 (2011), 91–101. https://doi.org/10.1007/s10543-011-0310-z doi: 10.1007/s10543-011-0310-z
    [2] W. Cai, C. Jiang, Y. Wang, Y. Song, Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions, J. Comput. Phys., 395 (2019), 166–185. https://doi.org/10.1016/j.jcp.2019.05.048 doi: 10.1016/j.jcp.2019.05.048
    [3] S. Coleman, Quantum sine-gordon equation as the massive Thirring model, Phys. Rev. D, 11 (1975), 2088–2097. https://doi.org/10.1103/PhysRevD.11.2088 doi: 10.1103/PhysRevD.11.2088
    [4] A. K. Edoh, A new kinetic-energy-preserving method based on the convective rotational form, J. Comput. Phys., 454 (2022), 110971. https://doi.org/10.1016/j.jcp.2022.110971 doi: 10.1016/j.jcp.2022.110971
    [5] K. Feng, M. Qin, Symplectic geometric algorithms for Hamiltonian systems, Berlin: Springer, 2010.
    [6] Y. Fu, W. Cai, Y. Wang, A linearly implicit structure-preserving scheme for the fractional sine-Gordon equation based on the IEQ approach, Appl. Numer. Math., 160 (2021), 368–385. https://doi.org/10.1016/j.apnum.2020.10.009 doi: 10.1016/j.apnum.2020.10.009
    [7] Y. Fu, W. Cai, Y. Wang, A linearly-implicit energy-preserving algorithm for the two-dimensional space-fractional nonlinear Schrödinger equation based on the SAV approach, J. Comput. Math., 41 (2023), 797–816. https://doi.org/10.4208/jcm.2111-m2020-0177 doi: 10.4208/jcm.2111-m2020-0177
    [8] Y. Gong, J. Zhao, X. Yang, Q. Wang, Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities, SIAM J. Sci. Comput., 40 (2018), B138–B167. https://doi.org/10.1137/17M1111759 doi: 10.1137/17M1111759
    [9] G. Gao, Z. Sun, H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. https://doi.org/10.1016/j.jcp.2013.11.017 doi: 10.1016/j.jcp.2013.11.017
    [10] E. Hairer, C. Lubich, G. Wanner, Structure-preserving algorithms for ordinary differential equations, Springer, 2006.
    [11] Q. Hong, Y. Wang, Y. Gong, Efficient energy-preserving numerical approximations for the sine-Gordon equation with Neumann boundary conditions, Sci. Sin. Math., 52 (2022), 709. https://doi.org/10.1360/SCM-2020-0695 doi: 10.1360/SCM-2020-0695
    [12] D. Hu, W. Cai, Y. Fu, Y. Wang, Fast dissipation-preserving difference scheme for nonlinear generalized wave equations with the integral fractional Laplacian, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105786. https://doi.org/10.1016/j.cnsns.2021.105786 doi: 10.1016/j.cnsns.2021.105786
    [13] D. Hu, W. Cai, Y. Song, Y. Wang, A fourth-order dissipation-preserving algorithm with fast implementation for space fractional nonlinear damped wave equations, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105432. https://doi.org/10.1016/j.cnsns.2020.105432 doi: 10.1016/j.cnsns.2020.105432
    [14] Z. Liu, S. Lü, F. Liu, Fully discrete spectral methods for solving time fractional nonlinear Sine-gordon equation with smooth and non-smooth solutions, Appl. Math. Comput., 333 (2018), 213–224. https://doi.org/10.1016/j.amc.2018.03.069 doi: 10.1016/j.amc.2018.03.069
    [15] N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135–3145. https://doi.org/10.1103/PhysRevE.62.3135 doi: 10.1103/PhysRevE.62.3135
    [16] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
    [17] J. Macías-Díaz, A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives, J. Comput. Phys., 351 (2017), 40–58. https://doi.org/10.1016/j.jcp.2017.09.028 doi: 10.1016/j.jcp.2017.09.028
    [18] J. Macías-Díaz, A numerically efficient dissipation-preserving implicit method for a nonlinear multidimensional fractional wave equation, J. Sci. Comput., 77 (2018), 1–26. https://doi.org/10.1007/s10915-018-0692-z doi: 10.1007/s10915-018-0692-z
    [19] J. Macías-Díaz, Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-gordon equations, Commun. Nonlinear Sci. Numer. Simul., 46 (2017), 89–102. https://doi.org/10.1016/j.cnsns.2016.11.002 doi: 10.1016/j.cnsns.2016.11.002
    [20] H. Ranocha, D. Ketcheson, Relaxation Runge-Kutta methods for Hamiltonian problems. J. Sci. Comput., 84 (2020), 17. https://doi.org/10.1007/s10915-020-01277-y doi: 10.1007/s10915-020-01277-y
    [21] M. Ran, C. Zhang, Compact difference scheme for a class of fractional-in-space nonlinear damped wave equations in two space dimensions, Comput. Math. Appl., 71 (2016), 1151–1162. https://doi.org/10.1016/j.camwa.2016.01.019 doi: 10.1016/j.camwa.2016.01.019
    [22] J. Shen, J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal., 56 (2018), 2895–2912. https://doi.org/10.1137/17M1159968 doi: 10.1137/17M1159968
    [23] J. Shen, J. Xu, J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407–416 https://doi.org/10.1016/j.jcp.2017.10.021 doi: 10.1016/j.jcp.2017.10.021
    [24] J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61 (2019), 474–506. https://doi.org/10.1137/17M1150153 doi: 10.1137/17M1150153
    [25] B. Sanderse, Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 233 (2013), 100–131. https://doi.org/10.1016/j.jcp.2012.07.039 doi: 10.1016/j.jcp.2012.07.039
    [26] B. K. Skagerstam, Generalized quantum sine-gordon equation and its relation to the Thirring model in quantum field theory, Phys. Rev. D, 13 (1976), 2827–2831. https://doi.org/10.1103/PhysRevD.13.2827 doi: 10.1103/PhysRevD.13.2827
    [27] T. Achouri, T. Kadri, K. Omrani, Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations, Comput. Math. Appl., 82 (202), 74–96. https://doi.org/10.1016/j.camwa.2020.11.012 doi: 10.1016/j.camwa.2020.11.012
    [28] D. Wang, A. Xiao, W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272 (2014), 644–655. https://doi.org/10.1016/j.jcp.2014.04.047 doi: 10.1016/j.jcp.2014.04.047
    [29] D. Wang, A. Xiao, W. Yang, Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242 (2013), 670–681. https://doi.org/10.1016/j.jcp.2013.02.037 doi: 10.1016/j.jcp.2013.02.037
    [30] J. Xie, Z. Zhang, An effective dissipation-preserving fourth-order difference solver for fractional-in-space nonlinear wave equations, J. Sci. Comput., 79 (2019), 1753–1776. https://doi.org/10.1007/s10915-019-00921-6 doi: 10.1007/s10915-019-00921-6
    [31] A. Xiao, J. Wang, Symplectic scheme for the Schrödinger equation with fractional Laplacian, Appl. Numer. Math., 146 (2019), 469–487. https://doi.org/10.1016/j.apnum.2019.08.002 doi: 10.1016/j.apnum.2019.08.002
    [32] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Phys., 327 (2016), 294–316. https://doi.org/10.1016/j.jcp.2016.09.029 doi: 10.1016/j.jcp.2016.09.029
    [33] Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with riesz space fractional derivatives, Appl. Math. Model., 34 (2010), 200–218. https://doi.org/10.1016/j.apm.2009.04.006 doi: 10.1016/j.apm.2009.04.006
    [34] X. Zhao, Z. Sun, Z. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput., 36 (2014), A2865–A2886. https://doi.org/10.1137/140961560 doi: 10.1137/140961560
    [35] Y. Zhou, Application of discrete functional analysis to the finite difierence methods, Beijing: International Academic Publishers, 1990.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(828) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog