Theory article

Energy minimizing solutions to slightly subcritical elliptic problems on nonconvex polygonal domains

  • Received: 10 July 2023 Revised: 01 September 2023 Accepted: 05 September 2023 Published: 12 September 2023
  • MSC : 35B33, 35J15, 35J60

  • In this paper we are concerned with the Lane-Emden-Fowler equation

    $ \begin{equation*} \left\{\begin{array}{rll}-\Delta u & = u^{\frac{n+2}{n-2}- \varepsilon}& {\rm{in}}\; \Omega, \\ u&>0& {\rm{in}}\; \Omega, \\ u& = 0& {\rm{on}}\; \partial \Omega, \end{array} \right. \end{equation*} $

    where $ \Omega \subset \mathbb{R}^n $ ($ n \geq 3 $) is a nonconvex polygonal domain and $ \varepsilon > 0 $. We study the asymptotic behavior of minimal energy solutions as $ \varepsilon > 0 $ goes to zero. A main part is to show that the solution is uniformly bounded near the boundary with respect to $ \varepsilon > 0 $. The moving plane method is difficult to apply for the nonconvex polygonal domain. To get around this difficulty, we derive a contradiction after assuming that the solution blows up near the boundary by using the Pohozaev identity and the Green's function.

    Citation: Woocheol Choi. Energy minimizing solutions to slightly subcritical elliptic problems on nonconvex polygonal domains[J]. AIMS Mathematics, 2023, 8(11): 26134-26152. doi: 10.3934/math.20231332

    Related Papers:

  • In this paper we are concerned with the Lane-Emden-Fowler equation

    $ \begin{equation*} \left\{\begin{array}{rll}-\Delta u & = u^{\frac{n+2}{n-2}- \varepsilon}& {\rm{in}}\; \Omega, \\ u&>0& {\rm{in}}\; \Omega, \\ u& = 0& {\rm{on}}\; \partial \Omega, \end{array} \right. \end{equation*} $

    where $ \Omega \subset \mathbb{R}^n $ ($ n \geq 3 $) is a nonconvex polygonal domain and $ \varepsilon > 0 $. We study the asymptotic behavior of minimal energy solutions as $ \varepsilon > 0 $ goes to zero. A main part is to show that the solution is uniformly bounded near the boundary with respect to $ \varepsilon > 0 $. The moving plane method is difficult to apply for the nonconvex polygonal domain. To get around this difficulty, we derive a contradiction after assuming that the solution blows up near the boundary by using the Pohozaev identity and the Green's function.



    加载中


    [1] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159–174. https://doi.org/10.1016/S0294-1449(16)30270-0 doi: 10.1016/S0294-1449(16)30270-0
    [2] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1–52. https://doi.org/10.1016/0022-1236(90)90002-3 doi: 10.1016/0022-1236(90)90002-3
    [3] F. V. Atkinson, L. A. Peletier, Elliptic equations with nearly critical growth, J. Differ. Equ., 70 (1987), 349–365. https://doi.org/10.1016/0022-0396(87)90156-2 doi: 10.1016/0022-0396(87)90156-2
    [4] H. Brezis, L. A. Peletier, Asymptotics for elliptic equations involving critical growth, In: Partial differential equations and the calculus of variations, Boston: Birkhäuser Boston, 1989. https://doi.org/10.1007/978-1-4615-9828-2_7
    [5] B. Aharrouch, A. Aberqi, J. Bennouna, Existence and regularity of solutions to unilateral nonlinear elliptic equation in Marcinkiewicz space with variable exponent, Filomat, 37 (2023), 5785–5797. https://doi.org/10.2298/FIL2317785A doi: 10.2298/FIL2317785A
    [6] T. Bartsch, Q. Guo, Nodal blow-up solutions to slightly subcritical elliptic problems with Hardy-critical term, Adv. Nonlinear Stud., 17 (2017), 55–85. https://doi.org/10.1515/ans-2016-6008 doi: 10.1515/ans-2016-6008
    [7] G. Cora, A. Iacopetti, On the structure of the nodal set and asymptotics of least energy sign-changing radial solutions of the fractional Brezis-Nirenberg problem, Nonlinear Anal., 176 (2018), 226–271. https://doi.org/10.1016/j.na.2018.07.001 doi: 10.1016/j.na.2018.07.001
    [8] Y. Dammak, R. Ghoudi, Sign-changing tower of bubbles to an elliptic subcritical equation, Commun. Contemp. Math., 21 (2019), 1850052. https://doi.org/10.1142/S0219199718500529 doi: 10.1142/S0219199718500529
    [9] Q. Guo, Blowup analysis for integral equations on bounded domains, J. Differ. Equ., 266 (2019), 8258–8280. https://doi.org/10.1016/j.jde.2018.12.028 doi: 10.1016/j.jde.2018.12.028
    [10] W. Ma, Z. Zhao, B. Yan, Global existence and blow-up of solutions to a parabolic nonlocal equation arising in a theory of thermal explosion, J. Funct. Spaces, 2022 (2022), 4629799. https://doi.org/10.1155/2022/4629799 doi: 10.1155/2022/4629799
    [11] M. Musso, A. Pistoia, Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent, Indiana Univ. Math. J., 51 (2002), 541–579.
    [12] M. Musso, A. Pistoia, Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl., 93 (2010), 1–40. https://doi.org/10.1016/j.matpur.2009.08.001 doi: 10.1016/j.matpur.2009.08.001
    [13] M. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385–397. https://doi.org/10.1215/S0012-7094-02-11327-1 doi: 10.1215/S0012-7094-02-11327-1
    [14] F. Takahashi, Asymptotic behavior of least energy solutions for a biharmonic problem with nearly critical growth, Asymptot. Anal., 60 (2008), 213–226. https://doi.org/10.3233/ASY-2008-0904 doi: 10.3233/ASY-2008-0904
    [15] D. Salazar, Sign changing bubbling solutions for a critical Neumann problem in 3D, Nonlinear Anal., 188 (2019), 500–539. https://doi.org/10.1016/j.na.2019.06.018 doi: 10.1016/j.na.2019.06.018
    [16] S. Santra, Existence and shape of the least energy solution of a fractional Laplacian, Calc. Var. Partial Differential Equations, 58 (2019), 48. https://doi.org/10.1007/s00526-019-1494-3 doi: 10.1007/s00526-019-1494-3
    [17] A. Pistoia, O. Rey, Boundary blow-up for a Brezis-Peletier problem on a singular domain, Calc. Var. Partial Differential Equations, 18 (2003), 243–251. https://doi.org/10.1007/s00526-003-0197-x doi: 10.1007/s00526-003-0197-x
    [18] M. Flucher, A. Garroni, S. Müller, Concentration of low energy extremals: Identification of concentration points, Calc. Var. Partial Differential Equations, 14 (2002), 483–516. https://doi.org/10.1016/S0294-1449(99)80015-8 doi: 10.1016/S0294-1449(99)80015-8
    [19] O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differ. Integral Equ., 4 (1991), 1155–1167. https://doi.org/10.57262/die/1371154279 doi: 10.57262/die/1371154279
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(806) PDF downloads(67) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog