Research article Special Issues

A Comprehensive study on $ (\alpha, \beta) $-multi-granulation bipolar fuzzy rough sets under bipolar fuzzy preference relation

  • Received: 25 July 2023 Revised: 24 August 2023 Accepted: 28 August 2023 Published: 07 September 2023
  • MSC : 03E72, 90B50

  • The rough set (RS) and multi-granulation RS (MGRS) theories have been successfully extended to accommodate preference analysis by substituting the equivalence relation (ER) with the dominance relation (DR). On the other hand, the bipolar fuzzy sets (BFSs) are effective tools for handling bipolarity and fuzziness of the data. In this study, with the description of the background of risk decision-making problems in reality, we present $ (\alpha, \beta) $-optimistic multi-granulation bipolar fuzzified preference rough sets ($ (\alpha, \beta)^o $-MG-BFPRSs) and $ (\alpha, \beta) $-pessimistic multi-granulation bipolar fuzzified preference rough sets ($ (\alpha, \beta)^p $-MG-BFPRSs) using bipolar fuzzy preference relation (BFPR). Subsequently, the relevant properties and results of both $ (\alpha, \beta)^o $-MG-BFPRSs and $ (\alpha, \beta)^p $-MG-BFPRSs are investigated in detail. At the same time, a relationship among the $ (\alpha, \beta) $-BFPRSs, $ (\alpha, \beta)^o $-MG-BFPRSs and $ (\alpha, \beta)^p $-MG-BFPRSs is given.

    Citation: Rizwan Gul, Muhammad Shabir, Tareq M. Al-shami, M. Hosny. A Comprehensive study on $ (\alpha, \beta) $-multi-granulation bipolar fuzzy rough sets under bipolar fuzzy preference relation[J]. AIMS Mathematics, 2023, 8(11): 25888-25921. doi: 10.3934/math.20231320

    Related Papers:

  • The rough set (RS) and multi-granulation RS (MGRS) theories have been successfully extended to accommodate preference analysis by substituting the equivalence relation (ER) with the dominance relation (DR). On the other hand, the bipolar fuzzy sets (BFSs) are effective tools for handling bipolarity and fuzziness of the data. In this study, with the description of the background of risk decision-making problems in reality, we present $ (\alpha, \beta) $-optimistic multi-granulation bipolar fuzzified preference rough sets ($ (\alpha, \beta)^o $-MG-BFPRSs) and $ (\alpha, \beta) $-pessimistic multi-granulation bipolar fuzzified preference rough sets ($ (\alpha, \beta)^p $-MG-BFPRSs) using bipolar fuzzy preference relation (BFPR). Subsequently, the relevant properties and results of both $ (\alpha, \beta)^o $-MG-BFPRSs and $ (\alpha, \beta)^p $-MG-BFPRSs are investigated in detail. At the same time, a relationship among the $ (\alpha, \beta) $-BFPRSs, $ (\alpha, \beta)^o $-MG-BFPRSs and $ (\alpha, \beta)^p $-MG-BFPRSs is given.



    加载中


    [1] M. Akram, Bipolar fuzzy graphs, Inf. Sci., 181 (2011), 5548–5564. https://doi.org/10.1016/j.ins.2011.07.037 doi: 10.1016/j.ins.2011.07.037
    [2] G. Ali, M. Akram, J. C. R. Alcantud, Attributes reductions of bipolar fuzzy relation decision systems, Neural Comput. Applic., 32 (2020), 10051–10071. https://doi.org/10.1007/s00521-019-04536-8 doi: 10.1007/s00521-019-04536-8
    [3] M. A. Alghamdi, N. O. Alshehri, M. Akram, Multi-criteria decision-making methods in bipolar fuzzy environment, Int. J. Fuzzy Syst., 20 (2018), 2057–2064. https://doi.org/10.1007/s40815-018-0499-y doi: 10.1007/s40815-018-0499-y
    [4] A. Ali, M. I. Ali, N. Rehman, New types of dominance based multi-granulation rough sets and their applications in Conflict analysis problems, J. Intell. Fuzzy Syst., 35 (2018), 3859–3871. https://doi.org/10.3233/JIFS-18757 doi: 10.3233/JIFS-18757
    [5] T. M. Al-shami, (2, 1)-Fuzzy sets: Properties, weighted aggregated operators and their applications to multi-criteria decision-making methods, Complex Intell. Syst., 9 (2023), 1687–1705. https://doi.org/10.1007/s40747-022-00878-4 doi: 10.1007/s40747-022-00878-4
    [6] T. M. Al-shami, An improvement of rough sets' accuracy measure using containment neighborhoods with a medical application, Inf. Sci., 569 (2021), 110–124. https://doi.org/10.1016/j.ins.2021.04.016 doi: 10.1016/j.ins.2021.04.016
    [7] T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8 (2022), 4101–4113. https://doi.org/10.1007/s40747-022-00704-x doi: 10.1007/s40747-022-00704-x
    [8] T. M. Al-shami, Bipolar soft sets: Relations between them and ordinary points and their applications, Complexity, 2021 (2021), 6621854. https://doi.org/10.1155/2021/6621854 doi: 10.1155/2021/6621854
    [9] T. M. Al-shami, J. C. R. Alcantud, A. Mhemdi, New generalization of fuzzy soft sets: $(a, b)$-Fuzzy soft sets, AIMS Mathematics, 8 (2023), 2995–3025. https://doi.org/10.3934/math.2023155 doi: 10.3934/math.2023155
    [10] T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883. https://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7
    [11] T. M. Al-shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from an infra-topology view, Soft Comput., 27 (2023), 1317–1330. https://doi.org/10.1007/s00500-022-07627-2 doi: 10.1007/s00500-022-07627-2
    [12] T. M. Al-shami, A. Mhemdi, Approximation spaces inspired by subset rough neighborhoods with applications, Demonstr. Math., 56 (2023), 20220223. https://doi.org/10.1515/dema-2022-0223 doi: 10.1515/dema-2022-0223
    [13] T. M. Al-shami, A. Mhemdi, Generalized frame for orthopair fuzzy sets: $(m, n)$-Fuzzy sets and their applications to multi-criteria decision-making methods, Information, 14 (2023), 56. https://doi.org/10.3390/info14010056 doi: 10.3390/info14010056
    [14] T. M. Al-shami, A. Mhemdi, Belong and nonbelong relations on double-Framed soft sets and their applications, J. Math., 2021 (2021), 9940301. https://doi.org/10.1155/2021/9940301 doi: 10.1155/2021/9940301
    [15] H. Chen, T. Li, C. Luo, J. Hu, Dominance-based neighborhood rough sets and its attribute reduction, In: Rough Sets and Knowledge Technology, Cham: Springer, 89–99, 2015. https://doi.org/10.1007/978-3-319-25754-9_8
    [16] S. M. Chen, T. E. Lin, L. W. Lee, Group decision making using incomplete fuzzy preference relations based on the additive consistency and the order consistency, Inf. Sci., 259 (2014), 1–15. https://doi.org/10.1016/j.ins.2013.08.042 doi: 10.1016/j.ins.2013.08.042
    [17] D. Dubois, H. Prade, Putting rough sets and fuzzy sets together, In: Intelligent Decision Support, Dordrecht: Springer, 203–232, 1992. https://doi.org/10.1007/978-94-015-7975-9_14
    [18] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107
    [19] T. Feng, J. S. Mi, Variable precision multigranulation decision-theoretic fuzzy rough sets, Knowledge-Based Syst., 91 (2016), 93–101. https://doi.org/10.1016/j.knosys.2015.10.007 doi: 10.1016/j.knosys.2015.10.007
    [20] S. Greco, B. Matarazzo, R. Słowinski, Rough approximation of a preference relation by dominance relations, Eur. J. Oper. Res., 117 (1999), 63–83. https://doi.org/10.1016/S0377-2217(98)00127-1 doi: 10.1016/S0377-2217(98)00127-1
    [21] S. Greco, B. Matarazzo, R. Słowinski, Rough approximation by dominance relations, Int. J. Intell. Syst., 17 (2002), 153–171. https://doi.org/10.1002/int.10014 doi: 10.1002/int.10014
    [22] S. Greco, B. Matarazzo, R. Słowinski, Fuzzy extention of the rough set approach to multicriteria and multiattribute sorting, In: Preferences and Decisions under Incomplete Knowledge, Heidelber: Physica, 131–151, 2000. https://doi.org/10.1007/978-3-7908-1848-2_8
    [23] R. Gul, M. Shabir, Roughness of a set by $(\alpha, \beta)$-indiscernibility of Bipolar fuzzy relation, Comput. Appl. Math., 39 (2020), 160. https://doi.org/10.1007/s40314-020-01174-y doi: 10.1007/s40314-020-01174-y
    [24] R. Gul, M. Shabir, $(\alpha, \beta)$-Multi-granulation bipolar fuzzified rough sets and their applications to multi criteria group decision making, J. Intell. Fuzzy Syst., 41 (2021), 2025–2060. https://doi.org/10.3233/JIFS-210717 doi: 10.3233/JIFS-210717
    [25] R. Gul, M. Shabir, A comprehensive study on $(\alpha, \beta)$-bipolar fuzzified rough set model based on bipolar fuzzy preference relation and corresponding decision-making applications, Comput. Appl. Math., 2023, In press.
    [26] Z. Gul, Some bipolar fuzzy aggregations operators and their applications in multicriteria group decision making, PhD thesis, Hazara University, 2015.
    [27] Y. Han, Z. Lu, Z. Du, Q. Luo, S. Chen, A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis, Comput. Methods Programs Biomed., 158 (2018), 1–10. https://doi.org/10.1016/j.cmpb.2018.02.004 doi: 10.1016/j.cmpb.2018.02.004
    [28] Y. Han, P. Shi, S. Chen, Bipolar-Valued Rough Fuzzy Set and Its Applications to the Decision Information System, IEEE Trans. Fuzzy Syst., 23 (2015), 2358–2370. https://doi.org/10.1109/TFUZZ.2015.2423707 doi: 10.1109/TFUZZ.2015.2423707
    [29] C. Hu, L. Zhang, Dynamic dominance-based multigranulation rough sets approaches with evolving ordered data, Int. J. Mach. Learn. Cybern., 12 (2021), 17–38. https://doi.org/10.1007/s13042-020-01119-1 doi: 10.1007/s13042-020-01119-1
    [30] B. Huang, C. X. Guo, Y. L. Zhuang, H. X. Li, X. Z. Zhou, Intuitionistic fuzzy multigranulation rough sets, Inf. Sci., 277 (2014), 299–320. https://doi.org/10.1016/j.ins.2014.02.064 doi: 10.1016/j.ins.2014.02.064
    [31] Y. Kang, S. Wu, Y. Li, W. Weng, New and improved: Grey multi-granulation rough sets, Int. J. Syst. Sci., 48 (2017), 2575–2589. https://doi.org/10.1080/00207721.2017.1324922 doi: 10.1080/00207721.2017.1324922
    [32] Q. Kong, X. Zhang, W. Xu, S. Xie, Attribute reducts of multi-granulation information system, Artif. Intell. Rev., 53 (2020), 1353–1371. https://doi.org/10.1007/s10462-019-09699-3 doi: 10.1007/s10462-019-09699-3
    [33] K. M. Lee, Bipolar-valued fuzzy sets and their basic operations: In: Proceedings of the International Conference, 307–317, 2000.
    [34] M. Li, M. Chen, W. Xu, Double-quantitative multigranulation decision-theoretic rough fuzzy set model, Int. J. Mach. Learn. Cybern., 10 (2019), 3225–3244. https://doi.org/10.1007/s13042-019-01013-5 doi: 10.1007/s13042-019-01013-5
    [35] J. Liang, F. Wang, C. Dang, Y. Qian, An efficient rough feature selection algorithm with a multi-granulation view, Int. J. Approx. Reason., 53 (2012), 912–926. https://doi.org/10.1016/j.ijar.2012.02.004 doi: 10.1016/j.ijar.2012.02.004
    [36] G. Lin, J. Liang, Y. Qian, An information fusion approach by combining multigranulation rough sets and evidence theory, Inf. Sci., 314 (2015), 184–199. https://doi.org/10.1016/j.ins.2015.03.051 doi: 10.1016/j.ins.2015.03.051
    [37] G. Lin, Y. Qian, J. Li, NMGRS: Neighborhood-based multigranulation rough sets, Int. J. Approx. Reason., 53 (2012), 1080–1093. https://doi.org/10.1016/j.ijar.2012.05.004 doi: 10.1016/j.ijar.2012.05.004
    [38] P. Liu, A. Ali, N. Rehman, Multi-granulation fuzzy rough sets based on fuzzy preference relations and their applications, IEEE Access, 7 (2019), 147825–147848. https://doi.org/10.1109/ACCESS.2019.2942854 doi: 10.1109/ACCESS.2019.2942854
    [39] N. Malik, M. Shabir, T. M. Al-shami, R. Gul, M. Arar, M. Hosny, Rough bipolar fuzzy ideals in semigroups, Complex Intell. Syst., 2023. https://doi.org/10.1007/s40747-023-01132-1. doi: 10.1007/s40747-023-01132-1
    [40] N. Malik, M. Shabir, T. M. Al-shami, R. Gul, A. Mhemdi, Medical decision-making techniques based on bipolar soft information, AIMS Mathematics, 8 (2023), 18185–18205. https://doi.org/10.3934/math.2023924 doi: 10.3934/math.2023924
    [41] P. Mandal, A. S. Ranadive, Fuzzy multi-granulation decision-theoretic rough sets based on fuzzy preference relation, Soft Comput., 23 (2019), 85–99. https://doi.org/10.1007/s00500-018-3411-7 doi: 10.1007/s00500-018-3411-7
    [42] P. Mandal, A. S. Ranadive, Multi-granulation bipolar-valued fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes, Soft Comput., 22 (2018), 8207–8226. https://doi.org/10.1007/s00500-017-2765-6 doi: 10.1007/s00500-017-2765-6
    [43] A. Mubarak, M. Shabir, W. Mahmood, Pessimistic multigranulation rough bipolar fuzzy set and their application in medical diagnosis, Comput. Appl. Math., 42 (2023), 249. https://doi.org/10.1007/s40314-023-02389-5 doi: 10.1007/s40314-023-02389-5
    [44] S. Orlovsky, Decision-making with a fuzzy preference relation, In: Readings in fuzzy sets for intelligent systems, 717–723, 1993. https://doi.org/10.1016/B978-1-4832-1450-4.50077-8
    [45] W. Pan, K. She, P. Wei, Multi-granulation fuzzy preference relation rough set for ordinal decision system, Fuzzy Sets Syst., 312 (2017), 87–108. https://doi.org/10.1016/j.fss.2016.08.002 doi: 10.1016/j.fss.2016.08.002
    [46] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [47] Y. Qian, J. Liang, Y. Yao, C. Dang, MGRS: A multi-granulation rough set, Inf. Sci., 180 (2010), 949–970. https://doi.org/10.1016/j.ins.2009.11.023 doi: 10.1016/j.ins.2009.11.023
    [48] Y. H. Qian, J. Y. Liang, W. Wei, Pessimistic rough decision, Second International Workshop on Rough Sets Theory, Zhoushan, PR China, 29 (2010), 440–449.
    [49] Y. Qian, H. Zhang, Y. Sang, J. Liang, Multigranulation decision-theoretic rough sets, Int. J. Approx. Reason., 55 (2014), 225–237. https://doi.org/10.1016/j.ijar.2013.03.004 doi: 10.1016/j.ijar.2013.03.004
    [50] J. Qian, C. Liu, X. Yue, Multigranulation sequential three-way decisions based on multiple thresholds, Int. J. Approx. Reason., 105 (2019), 396–416. https://doi.org/10.1016/j.ijar.2018.12.007 doi: 10.1016/j.ijar.2018.12.007
    [51] T. L. Saaty, The analytic hierarchy process, New York: McGraw-Hill, 1980.
    [52] Y. She, X. He, On the structure of the multigranulation rough set model, Knowledge-Based Syst., 36 (2012), 81–92. https://doi.org/10.1016/j.knosys.2012.05.019 doi: 10.1016/j.knosys.2012.05.019
    [53] Y. She, X. He, H. Shi, Y. Qian, A multiple-valued logic approach for multigranulation rough set model, Int. J. Approx. Reason., 82 (2017), 270–284. https://doi.org/10.1016/j.ijar.2016.12.006 doi: 10.1016/j.ijar.2016.12.006
    [54] P. K. Singh, C. A. Kumar, Bipolar fuzzy graph representation of concept lattice, Inf. Sci., 288 (2014), 437–448. https://doi.org/10.1016/j.ins.2014.07.038 doi: 10.1016/j.ins.2014.07.038
    [55] A. Skowron, J. Stepaniuk, Tolerance approximation spaces, Fund. Inform., 27 (1996), 245–253. https://doi.org/10.3233/FI-1996-272311 doi: 10.3233/FI-1996-272311
    [56] B. Sun, W. Ma, X. Chen, X. Zhang, Multigranulation vague rough set over two universes and its application to group decision making, Soft Comput., 23 (2019), 8927–8956. https://doi.org/10.1007/s00500-018-3494-1 doi: 10.1007/s00500-018-3494-1
    [57] B. Sun, W. Ma, Y. Qian, Multigranulation fuzzy rough set over two universes and its application to decision making, Knowledge-Based Syst., 123 (2017), 61–74. https://doi.org/10.1016/j.knosys.2017.01.036 doi: 10.1016/j.knosys.2017.01.036
    [58] F. Tufail, M. Shabir, VIKOR method for MCDM based on bipolar fuzzy soft $\beta$-covering based bipolar fuzzy rough set model and its application to site selection of solar power plant, J. Intell. Fuzzy Syst., 42 (2022), 1835–1857. https://doi.org/10.3233/JIFS-211223 doi: 10.3233/JIFS-211223
    [59] G. Wei, C. Wei, H. Gao, Multiple attribute decision making with interval-valued bipolar fuzzy information and their application to emerging technology commercialization evaluation, IEEE Access, 6 (2018), 60930–60955. https://doi.org/10.1109/ACCESS.2018.2875261 doi: 10.1109/ACCESS.2018.2875261
    [60] G. Wei, F. E. Alsaadi, T. Hayat, A. Alsaedi, Bipolar fuzzy Hamacher aggregation operators in multiple attribute decision making, Int. J. Fuzzy Syst., 20 (2018), 1–12. https://doi.org/10.1007/s40815-017-0338-6 doi: 10.1007/s40815-017-0338-6
    [61] W. Z. Wu, Y. Leung, Theory and applications of granular labelled partitions in multi-scale decision tables, Inf. Sci., 181 (2011), 3878–3897. https://doi.org/10.1016/j.ins.2011.04.047 doi: 10.1016/j.ins.2011.04.047
    [62] Z. S. Xu, Intuitionistic preference relations and their application in group decision making, Inf. Sci., 177 (2007), 2363–2379. https://doi.org/10.1016/j.ins.2006.12.019 doi: 10.1016/j.ins.2006.12.019
    [63] W. Xu, W. Sun, X. Zhang, W. Zhang, Multiple granulation rough set approach to ordered information systems, Int. J. Gen. Syst., 41 (2012), 475–501. https://doi.org/10.1080/03081079.2012.673598 doi: 10.1080/03081079.2012.673598
    [64] W. Xu, W. Li, X. Zhang, Generalized multigranulation rough sets and optimal granularity selection, Granul. Comput., 2 (2017), 271–288. https://doi.org/10.1007/s41066-017-0042-9 doi: 10.1007/s41066-017-0042-9
    [65] W. Xu, X. Zhang, W. Zhang, Two new types of multiple granulation rough set, Int. Scholarly Res. Not., 2013 (2013), 791356. https://doi.org/10.1155/2013/791356 doi: 10.1155/2013/791356
    [66] Z. Xue, L. P. Zhao, M. Zhang, B. X. Sun, Three-way decisions based on multi-granulation support intuitionistic fuzzy probabilistic rough sets, J. Intell. Fuzzy Syst., 38 (2020), 5013–5031. https://doi.org/10.3233/JIFS-191657 doi: 10.3233/JIFS-191657
    [67] X. B. Yang, Y. H. Qian, J. Y. Yang, Hierarchical structures on multigranulation spaces, J. Comput. Sci. Technol., 27 (2012), 1169–1183. https://doi.org/10.1007/s11390-012-1294-0 doi: 10.1007/s11390-012-1294-0
    [68] X. B. Yang, X. N. Song, H. L. Dou, J. Y. Yang, Multi-granulation rough set: From crisp to fuzzy case, Ann. Fuzzy Math. Inform., 1 (2011), 55–70.
    [69] H. L. Yang, S. G. Li, S. Wang, J. Wang, Bipolar fuzzy rough set model on two different universes and its application, Knowledge-Based Syst., 35(2012), 94–101. https://doi.org/10.1016/j.knosys.2012.01.001 doi: 10.1016/j.knosys.2012.01.001
    [70] H. L. Yang, S. G. Li, Z. L. Guo, C. H. Ma, Transformation of bipolar fuzzy rough set models, Knowledge-Based Syst., 27 (2012), 60–68. https://doi.org/10.1016/j.knosys.2011.07.012 doi: 10.1016/j.knosys.2011.07.012
    [71] Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inf. Sci., 111 (1998), 239–259. https://doi.org/10.1016/S0020-0255(98)10006-3 doi: 10.1016/S0020-0255(98)10006-3
    [72] X. You, J. Li, H. Wang, Relative reduction of neighborhood-covering pessimistic multigranulation rough set based on evidence theory, Information, 10 (2019), 334. https://doi.org/10.3390/info10110334 doi: 10.3390/info10110334
    [73] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [74] W. Zakowski, Approximations in the space $(U, \prod)$, Demonstr. Math., 16 (1983), 761–770. https://doi.org/10.1515/dema-1983-0319 doi: 10.1515/dema-1983-0319
    [75] J. Zhan, W. Xu, Two types of coverings based multigranulation rough fuzzy sets and applications to decision making, Artif. Intell. Rev., 53(2020), 167–198. https://doi.org/10.1007/s10462-018-9649-8 doi: 10.1007/s10462-018-9649-8
    [76] J. Zhan, X. Zhang, Y. Yao, Covering based multigranulation fuzzy rough sets and corresponding applications, Artif. Intell. Rev., 53 (2020), 1093–1126. https://doi.org/10.1007/s10462-019-09690-y doi: 10.1007/s10462-019-09690-y
    [77] W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, 1994,305–309. https://doi.org/10.1109/IJCF.1994.375115
    [78] X. Zhang, D. Miao, C. Liu, M. Le, Constructive methods of rough approximation operators and multigranulation rough sets, Knowledge-Based Syst., 91 (2016), 114–125. https://doi.org/10.1016/j.knosys.2015.09.036 doi: 10.1016/j.knosys.2015.09.036
    [79] H. Zhang, J. Zhan, Y. He, Multi-granulation hesitant fuzzy rough sets and corresponding applications, Soft Comput., 23 (2019), 13085–13103. https://doi.org/10.1007/s00500-019-03853-3 doi: 10.1007/s00500-019-03853-3
    [80] W. R. Zhang, A. K. Pandurangi, K. E. Peace, Y. Q. Zhang, Z. Zhao, MentalSquares: A generic bipolar support vector machine for psychiatric disorder classification, diagnostic analysis and neurobiological data mining, Int. J. Data Min. Bioin., 5 (2011), 532–557. https://doi.org/10.1504/ijdmb.2011.043034 doi: 10.1504/ijdmb.2011.043034
    [81] W. R. Zhang, G-CPT Symmetry of Quantum Emergence and Submergence–An Information Conservational Multiagent Cellular Automata Unification of CPT Symmetry and CP Violation for Equilibrium-Based Many-World Causal Analysis of Quantum Coherence and Decoherence, J. Quantum Inf. Sci., 6 (2016), 62–97. https://doi.org/10.4236/jqis.2016.62008 doi: 10.4236/jqis.2016.62008
    [82] W. R. Zhang, L. Zhang, YinYang bipolar logic and bipolar fuzzy logic, Inf. Sci., 165 (2004), 265–287. https://doi.org/10.1016/j.ins.2003.05.010 doi: 10.1016/j.ins.2003.05.010
    [83] W. Ziarko, Variable precision rough set model, J. Comput. Syst. Sci., 46 (1993), 39–59. https://doi.org/10.1016/0022-0000(93)90048-2 doi: 10.1016/0022-0000(93)90048-2
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1062) PDF downloads(65) Cited by(4)

Article outline

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog