Research article

Blow-up to a shallow water wave model including the Degasperis-Procesi equation

  • Received: 04 June 2023 Revised: 31 July 2023 Accepted: 22 August 2023 Published: 31 August 2023
  • MSC : 35G25, 35L05

  • A nonlinear equation, depicting motions of shallow water waves and including the famous Degasperis-Procesi model, is considered. The key element is that we derive $ L^2 $ conservation law of solutions for the nonlinear equation, which leads to the bound of the solution itself. Using several estimates derived from the model, we obtain that when its solution blows up in the Sobolev space if and only if the space derivative of the solution tends to minus infinite.

    Citation: Jin Hong, Shaoyong Lai. Blow-up to a shallow water wave model including the Degasperis-Procesi equation[J]. AIMS Mathematics, 2023, 8(11): 25409-25421. doi: 10.3934/math.20231296

    Related Papers:

  • A nonlinear equation, depicting motions of shallow water waves and including the famous Degasperis-Procesi model, is considered. The key element is that we derive $ L^2 $ conservation law of solutions for the nonlinear equation, which leads to the bound of the solution itself. Using several estimates derived from the model, we obtain that when its solution blows up in the Sobolev space if and only if the space derivative of the solution tends to minus infinite.



    加载中


    [1] L. Akinyemi, P. Veeresha, S. O. Ajibola, Numerical simulation for coupled noninear Schr$\ddot{o}$dinger-Korteweg-de Vries and Maccari systems of equations, Mod. Phys. Lett. B, 35 (2021), 2150339. https://doi.org/10.1142/S0217984921503395 doi: 10.1142/S0217984921503395
    [2] A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch Rational Mech. Anal., 192 (2009), 165–186. https://doi.org/10.1007/s00205-008-0128-2 doi: 10.1007/s00205-008-0128-2
    [3] A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229–243. https://doi.org/10.1007/BF02392586 doi: 10.1007/BF02392586
    [4] A. Constantin, R. Ivanov, Dressing method for the Degasperis-Procesi equation, Stud. Appl. Math., 138 (2017), 205–226. https://doi.org/10.1111/sapm.12149 doi: 10.1111/sapm.12149
    [5] G. M. Coclite, K. H. Karlsen, Periodic solutions of the Degasperis-Procesi equation: well-posedness and asymptotics, J. Funct. Anal., 268 (2015), 1053–1077. https://doi.org/10.1016/j.jfa.2014.11.008 doi: 10.1016/j.jfa.2014.11.008
    [6] A. Degasperis, M. Procesi, Asymptotic integrability, In: Symmetry and perturbation theory, Singapore: World Scientific Publication, 1999, 23–37.
    [7] J. Escher, Y. Liu, Z. Y. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457–485. https://doi.org/10.1016/j.jfa.2006.03.022 doi: 10.1016/j.jfa.2006.03.022
    [8] I. L. Freire, Conserved quantities, continuation and compactly supported solutions of some shallow water models, J. Phys. A: Math. Theor., 54 (2021), 015207. https://doi.org/10.1088/1751-8121/ABC9A2 doi: 10.1088/1751-8121/ABC9A2
    [9] Z. G. Guo, K. Li, C. Yu, Some properties of solutions to the Camassa-Holm-type equation with higher order nonlinearities, J. Nonlinear Sci., 28 (2018), 1901–1914. https://doi.org/10.1007/s00332-018-9469-7 doi: 10.1007/s00332-018-9469-7
    [10] D. Henry, Infinite propagation speed for the Degasperis-Procesi equation, J. Math. Anal. Appl., 311 (2005), 755–759. https://doi.org/10.1016/j.jmaa.2005.03.001 doi: 10.1016/j.jmaa.2005.03.001
    [11] G. H$\ddot{o}$rmann, Discontinuous traveling waves as weak solutions to the Fornberg-Whitham equation, J. Differ. Equations, 265 (2018), 2825–2841. https://doi.org/10.1016/j.jde.2018.04.056 doi: 10.1016/j.jde.2018.04.056
    [12] T. Y. Han, Z. Li, K. Shi, G. C. Wu, Bifurcation and travelling wave solutions of stochastic Manakov model with multiplication white noise in birefringent fibers, Chaos Soliton. Fract., 163 (2022), 112548. https://doi.org/10.1016/j.chaos.2022.112548 doi: 10.1016/j.chaos.2022.112548
    [13] E. Ilhan, P. Veeresha, H. M. Baskonus, Fractional approach for a mathematical model of atmospheric dynamics of $CO_2$ gas with an efficient method, Chaos Soliton. Fract., 152 (2021), 111374. https://doi.org/10.1016/j.chaos.2021.111347 doi: 10.1016/j.chaos.2021.111347
    [14] Y. Liu, Z. Y. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys., 267 (2006), 801–820. https://doi.org/10.1007/s00220-006-0082-5 doi: 10.1007/s00220-006-0082-5
    [15] H. Lundmark, J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Probl., 19 (2003), 1241–1245. https://doi.org/10.1088/0266-5611/19/6/001 doi: 10.1088/0266-5611/19/6/001
    [16] Z. W. Lin, Y. Liu. Stability of peakons for the Degasperis-Procesi equation, Commun. Pur. Appl. Math., 62 (2009), 125–146. https://doi.org/10.1002/cpa.20239 doi: 10.1002/cpa.20239
    [17] S. Y. Lai, H. B. Yan, H. J. Chen, Y. Wang, The stability of local strong solutions for a shallow water equation, J. Inequal. Appl., 2014 (2014), 410. https://doi.org/10.1186/1029-242x-2014-410 doi: 10.1186/1029-242x-2014-410
    [18] J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306 (2005), 72–82. https://doi.org/10.1016/j.jmaa.2004.11.038 doi: 10.1016/j.jmaa.2004.11.038
    [19] Y. Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit, Inverse Probl., 21 (2005), 1553–1570. https://doi.org/10.1088/0266-5611/21/5/004 doi: 10.1088/0266-5611/21/5/004
    [20] P. L. Silva, I. L. Freire, Existence, persistence, and continuation of solutions for a generalized 0-Holm-Staley equation, J. Differ. Equations, 320 (2022), 371–398. https://doi.org/10.1016/j.jde.2022.02.058 doi: 10.1016/j.jde.2022.02.058
    [21] X. Y. Tu, C. L. Mu, S. Y. Qiu, Continuous dependence on data under the Lipschitz metric for the rotation-Camassa-Holm equation, Acta Math. Sci., 41 (2021), 1–18. https://doi.org/10.1007/s10473-021-0101-9 doi: 10.1007/s10473-021-0101-9
    [22] V. O. Vakhnenko, E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos Soliton. Fract., 20 (2004), 1059–1073. https://doi.org/10.1016/j.chaos.2003.09.043 doi: 10.1016/j.chaos.2003.09.043
    [23] P. Veeresha, M. Yavuz, C. Baishya, A comptational approach for shallow water forced Korteweg-De Vries equation on critical flow over a hole with three fractional operators, Int. J. Optimiz. Contro., 11 (2021), 52–67. https://doi.org/10.11121/ijocta.2021.1177 doi: 10.11121/ijocta.2021.1177
    [24] Z. Y. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47 (2003), 649–666. https://doi.org/10.1215/ijm/1258138186 doi: 10.1215/ijm/1258138186
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1219) PDF downloads(203) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog