Research article

Existence of solutions to mixed local and nonlocal anisotropic quasilinear singular elliptic equations

  • Received: 14 July 2023 Revised: 14 August 2023 Accepted: 15 August 2023 Published: 24 August 2023
  • MSC : 35J67, 35R11

  • In this paper, we consider the existence of positive solutions to mixed local and nonlocal singular quasilinear singular elliptic equations

    $ \begin{align*} \left\{\begin{array}{rl} -\Delta_{\vec{p}}u(x)+\left(-\Delta\right)_{p}^{s}u(x) = \frac{f(x)}{u(x)^{\delta}}, &x\in\Omega, \\ u(x)>0, \; \; \; \; \; \; &x\in\Omega, \\ u(x) = 0, \; \; \; \; \; \; &x\in\mathbb{R}^{N}\setminus\Omega, \end{array} \right. \end{align*} $

    where $ \Omega $ is a bounded smooth domain of $ \mathbb{R}^{N}(N > 2) $, $ -\Delta_{\vec{p}}u $ is an anisotropic $ p $-Laplace operator, $ \vec{p} = (p_{1}, p_{2}, ..., p_{N}) $ with $ 2\leq p_{1}\leq p_{2}\leq\cdot\cdot\cdot\leq p_{N} $, $ \left(-\Delta \right)_{p}^{s} $ is the fractional $ p $-Laplace operator. The major results shows the interplay between the summability of the datum $ f(x) $ and the power exponent $ \delta $ in singular nonlinearities.

    Citation: Labudan Suonan, Yonglin Xu. Existence of solutions to mixed local and nonlocal anisotropic quasilinear singular elliptic equations[J]. AIMS Mathematics, 2023, 8(10): 24862-24887. doi: 10.3934/math.20231268

    Related Papers:

  • In this paper, we consider the existence of positive solutions to mixed local and nonlocal singular quasilinear singular elliptic equations

    $ \begin{align*} \left\{\begin{array}{rl} -\Delta_{\vec{p}}u(x)+\left(-\Delta\right)_{p}^{s}u(x) = \frac{f(x)}{u(x)^{\delta}}, &x\in\Omega, \\ u(x)>0, \; \; \; \; \; \; &x\in\Omega, \\ u(x) = 0, \; \; \; \; \; \; &x\in\mathbb{R}^{N}\setminus\Omega, \end{array} \right. \end{align*} $

    where $ \Omega $ is a bounded smooth domain of $ \mathbb{R}^{N}(N > 2) $, $ -\Delta_{\vec{p}}u $ is an anisotropic $ p $-Laplace operator, $ \vec{p} = (p_{1}, p_{2}, ..., p_{N}) $ with $ 2\leq p_{1}\leq p_{2}\leq\cdot\cdot\cdot\leq p_{N} $, $ \left(-\Delta \right)_{p}^{s} $ is the fractional $ p $-Laplace operator. The major results shows the interplay between the summability of the datum $ f(x) $ and the power exponent $ \delta $ in singular nonlinearities.



    加载中


    [1] D. Blazevski, D. Negrete, Local and nonlocal anisotropic transport in reversed shear magnetic fields Shearless Cantori and nondiffusive transport, Phys. Rev. E, 87 (2013), 063106. https://doi.org/10.1103/PhysRevE.87.063106 doi: 10.1103/PhysRevE.87.063106
    [2] S. Guo, Patterns in a nonlocal time-delayed reaction-diffusion equation, Z. Angew. Math. Phys., 69 (2018), 10. https://doi.org/10.1007/s00033-017-0904-7 doi: 10.1007/s00033-017-0904-7
    [3] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: Regularity and maximum principles, Commun. Partial Differ. Equ., 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908
    [4] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi. A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators, Math. Engrg., 5 (2023), 1–25. https://doi.org/10.48550/arXiv.2110.07129 doi: 10.48550/arXiv.2110.07129
    [5] S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: An evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Phys. A, 575 (2021), 126052. https://doi.org/10.1016/j.physa.2021.126052 doi: 10.1016/j.physa.2021.126052
    [6] S. Dipierro, E. P. Lippi, E. Valdinoci, (Non)local logistic equations with neumann conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2021. https://doi.org/10.48550/arXiv.2101.02315 doi: 10.48550/arXiv.2101.02315
    [7] P. Garain, On a class of mixed local and nonlocal semilinear elliptic equation with singular nonlinearity, J. Geom. Anal., 33 (2023), 212. https://doi.org/10.1007/s12220-023-01262-5 doi: 10.1007/s12220-023-01262-5
    [8] B. Hu, Y. Yang, A note on the combination between local and nonlocal $p$-Laplacian operators, Complex Var. Elliptic Equ., 65 (2020), 1763–1776. https://doi.org/10.1080/17476933.2019.1701450 doi: 10.1080/17476933.2019.1701450
    [9] B. Barrios, I. De Bonis, M. Medina, I. Peral, Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math. J., 13 (2015), 390–407. https://doi.org/10.1515/math-2015-0038 doi: 10.1515/math-2015-0038
    [10] A. Youssfi, G. Mahmoud, Nonlocal semilinear elliptic problems with singular nonlinearity, Calc. Var. Partial Differential Equations, 60 (2021), 153. https://doi.org/10.1007/s00526-021-02034-1 doi: 10.1007/s00526-021-02034-1
    [11] B. Abdellaoui, K. Biroud, A. Primo, Nonlinear fractional elliptic problem with singular term at the boundary, Complex Var. Elliptic Equ., 64 (2019), 909–932. https://doi.org/10.1080/17476933.2018.1487410 doi: 10.1080/17476933.2018.1487410
    [12] A. Ghanmi, K. Saoudi, A multiplicity results for a singular problem involving the fractional $p$-Laplacian operator, Complex Var. Elliptic Equ., 61 (2016), 1199–1216. https://doi.org/10.1080/17476933.2016.1154548 doi: 10.1080/17476933.2016.1154548
    [13] J. Giacomoni, T. Mukherjee, K. Sreenadh, Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal., 6 (2017), 327–354. https://doi.org/10.1515/anona-2016-0113 doi: 10.1515/anona-2016-0113
    [14] L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37 (2010), 363–380. https://doi.org/10.1007/s00526-009-0266-x doi: 10.1007/s00526-009-0266-x
    [15] J. Giacomoni, I. Schindler, P. Takac, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 5393–5423. https://www.ams.org/mathscinet-getitem?mr = 2341518
    [16] A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Adv. Nonlinear Stud., 9 (2009), 367–393. https://doi.org/10.1515/ans-2009-0207 doi: 10.1515/ans-2009-0207
    [17] P. Garain, On a degenerate singular elliptic problem, Math. Nachr., 295 (2022), 1354–1377. https://doi.org/10.48550/arXiv.1803.02102 doi: 10.48550/arXiv.1803.02102
    [18] P. Garain, T. Mukherjee, On a class of weighted p-Laplace equation with singular nonlinearity, Mediterr. J. Math., 17 (2022), 110. https://doi.org/10.1007/s00009-020-01548-w doi: 10.1007/s00009-020-01548-w
    [19] S. Miri, On an anisotropic problem with singular nonlinearity having variable exponent, Ric. Mat., 66 (2017), 415–424. https://doi.org/10.1007/s11587-016-0309-5 doi: 10.1007/s11587-016-0309-5
    [20] K. Bal, P. Garain, Weighted and anisotropic sobolev inequality with extremal, Manuscripta Math., 168 (2022), 101–117. https://doi.org/10.1080/17476933.2018.1487410 doi: 10.1080/17476933.2018.1487410
    [21] P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated singular elliptic problems, Nonlinear Anal., 223 (2022), 113022. https://doi.org/10.1016/j.na.2022.113022 doi: 10.1016/j.na.2022.113022
    [22] C. Filippis, G. Mingione, Gradient regularity in mixed local and nonlocal problems, Math. Ann., (2022), 1–68. https://doi.org/10.1007/s00208-022-02512-7 doi: 10.1007/s00208-022-02512-7
    [23] P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, Trans. Amer. Math. Soc., 375 (2022), 5393–5423. https://doi.org/10.1090/tran/8621 doi: 10.1090/tran/8621
    [24] P. Garain, E. Lindgren, Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations, Calc. Var. Partial Differential Equations, 62 (2023), 67. https://doi.org/10.1007/s00526-022-02401-6 doi: 10.1007/s00526-022-02401-6
    [25] S. Huang, H. Hajaiej, Lazer-McKenna type problem involving mixed local and nonlocal elliptic operators, Res. Gate, 2023. https://doi.org/10.13140/RG.2.2.13140.68481 doi: 10.13140/RG.2.2.13140.68481
    [26] C. LaMao, S. Huang, Q. Tian, C. Huang, Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators, AIMS Mathematics, 7 (2022), 4199–4210. https://doi.org/10.3934/math.2022233 doi: 10.3934/math.2022233
    [27] X. Li, S. Huang, M. Wu, C. Huang, Existence of solutions to elliptic equation with mixed local and nonlocal operators, AIMS Mathematics, 7 (2022), 13313–13324. https://doi.org/10.3934/math.2022735 doi: 10.3934/math.2022735
    [28] A. Salort, E. Veccht, On the mixed local-nonlocal Hénon equation, Differ. Integral Equ., 35 (2022), 795–818. https://doi.org/10.57262/die035-1112-795 doi: 10.57262/die035-1112-795
    [29] X. Su, E. Valdinoci, Y. Wei, J. Zhang, Regularity results for solutions of mixed local and nonlocal elliptic equations, Math. Z., 302 (2022), 1855–1878. https://doi.org/10.1007/s00209-022-03132-2 doi: 10.1007/s00209-022-03132-2
    [30] X. Zha, S. Huang, Q. Tian, Uniform boundedness results of solutions to mixed local and nonlocal elliptic operator, AIMS Mathematics, 8 (2023), 20665–20678. https://doi.org/10.3934/math.20231053 doi: 10.3934/math.20231053
    [31] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [32] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493–516. https://doi.org/10.1016/S0294-1449(98)80032-2 doi: 10.1016/S0294-1449(98)80032-2
    [33] S. Byun, K. Song, Mixed local and nonlocal equations with measure data, Calc. Var. Partial Differential Equations, 62 (2023), 14. https://doi.org/10.1007/s00526-022-02349-7 doi: 10.1007/s00526-022-02349-7
    [34] A. Moameni, K. Wong, Existence of solutions for nonlocal supercritical elliptic problems, J. Geom. Anal., 31 (2021), 164–186. https://doi.org/10.1007/s12220-019-00254-8 doi: 10.1007/s12220-019-00254-8
    [35] E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795–826. https://doi.org/10.1007/s00526-013-0600-1 doi: 10.1007/s00526-013-0600-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1076) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog