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Abstract: In this paper, we consider the existence of positive solutions to mixed local and nonlocal
singular quasilinear singular elliptic equations
—Asu(x) + (A u(x) = 15, xeQ,
u(x) >0, x € Q,
u(x) =0, xeRV\Q,

where Q is a bounded smooth domain of R¥(N > 2), —A;u is an anisotropic p-Laplace operator,
7= (p1, P2, -, px) With2 < py < py < -+ < py, (=A);, is the fractional p-Laplace operator. The major
results shows the interplay between the summability of the datum f(x) and the power exponent ¢ in
singular nonlinearities.
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1. Introduction

Our main purpose of this study is to investigate the existence of positive solutions to the following
mixed local and nonlocal quasilinear singular elliptic equation

—Apu(x) + (- u(x) = L% xeQ,

u(x) > 0, x € Q, (L.1)
u(x) =0, xRN\ Q,

where Q is a bounded smooth domain of R¥(N > 2), Au is an anisotropic version of the p-Laplace
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operator, which is sometimes referred as the pseudo p-Laplace operator,
N
Agu(x) = > 0 [10u(x)l" ™ du(x))
i=1

where p = (p1, p2, .., pn), pi = 2 forall i = 1,2,...,N. The fractional p-Laplace operator (—A);,
(s € (0,1), p > 1) is defined by

2

— -2 —
(<) ) = B. f u(x) = u(IP2(u(x) — uy)

RN |x — y[Ntps

where P.V. denotes the Cauchy principal value.

Recently, there has been increasing attention focused on the study of elliptic operators that involve
mixed local and nonlocal operators.These equations often arise spontaneously in the study of plasma
physics and population dynamics [1,2]. For some other related results of mixed local and nonlocal
equation, see [3—8] and the references therein. In the nonlocal case (0 < s < 1), Barrios et al. [9]
investigated the existence and uniqueness results of positive solutions to the following problem with

p=2

M)y ux) =5, xeQ,

u(x) >0, x e Q, (1.2)
u(x) =0, xRN\ Q.

In the case 6 > 0, the existence of solutions to problem (1.2) obtained by the range of ¢ to the
summability of f. Incase 0 < 6 < 1 and 1 < 6, Youssfi and Mahmoud [10] studied the existence
of solutions to problem (1.2) with p = 2 under some suitable assumptions on the datum f. For further
information, readers may refer to the related work [11-13] and references therein.
In the local case, Boccardo and Orsina [14] used the method of approximation to prove the existence
of solutions to following the problem with p = 2,
—Au(x) = I8, xeQ,
u(x) > 0, xeQ, (1.3)
u(x) =0, xRN\ Q.

They also studied the summability of these solutions when ¢ € (0, c0). Giacomoni and Schindler [15]
employ variational methods proved the existence of solution to quasilinear elliptic problem for p; =
p € (1,00) with 6 € (0, 1). During the past few years, there has been a vast amount of literature devoted
to studying the anisotropic operator, which has numerous applications in fluid dynamics and physical
phenomena, (we refer readers to [16—19] and references therein). Miri [19] further extended some
results of [14] to an anisotropic quasilinear singular elliptic problem with variable exponent 6(x), and
obtained existence of a solution to this problem. Bal and Garain [20, Theorems 2.7 and Theorems 2.9]
established existence and uniqueness of solutions to the following mixed singular problems

—Liu(x) = fi(0u(x)° + g1(u(x)”, xe€Q,
u(x) > 0, x €, (1.4)
u(x) =0, x € 0Q),
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and

—Lou(x) = H(x)u(x)™ + g(u(x)™”, x€Q,
u(x) > 0, x e, (1.5)
u(x) =0, x € 0Q,

where Q is a bounded smooth subset of RY, N > 2,6 > 0,y > 1, fj» & (j = 1, 2) are nonnegative
integrable functions,

N
Liu(x) = div [w(x)IVu(x)Ip_ZVu(x)] , Lou(x) = Z 0; [I(?,-u()c)l‘”"_2 (9,-u(x)] .
i=1

When g; = 0 (j = 1,2), they obtained a solution to problems (1.4) and (1.5) associated with the
following minimizing problems

vi(Q) := inf {f IVulpwdx:f|u|l_5f1dx:1},
ueW,? Q) \JQ Q

and
N
»(Q) = inf f |0ul” dx : f ' frdx =1} .
ueW)? @ ' Ja Q
Garain and Ukhlov [21, Theorems 2.13] proved the existence of solution to the following problem
—Apu(x) + (A u(x) = 15, xeQ,

u(x) > 0, xeQ, (1.6)
u(x) =0, xeRY\ Q.

It has been shown that problem (1.6) has a weak solution u € W(;’p () when 6 € (0,1] and
f e L")\ {0} with m = (), where p* = NN—_”p while if § € (1,00) and f € L'(Q) \ {0}, then

problem (1.6) has a weak solution u € Wllof (©2) with M%M € Wé’p (€2). Moreover, they proved that
mixed Sobolev inequalities are both necessary and sufficient for the existence of weak solutions to such
singular problems. For related results about mixed local and nonlocal elliptic operators see [22-30]
and references therein.

Motivated by the results of the above cited papers, especially [20,21], the our purpose of this study
is to establish the existence of solutions to problem (1.1) according to the range of the power exponent
0 and to the summability of datum f(x). The main results as follows:

Theorem 1.1. Let 0O <9 < 1and 1 < p < N. Suppose that f > 0, f € L"(Q) with m > 1. Then there
exists a weak solution u to problem (1.1) such that

. 0o . Np _ .
(i) ue L=(Q) if m > NN e’ where p satisfies

1
N

1
Di

TR

N
i=1
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(ii) ue L'(Q) ifm<m < m where

Np . m(1 -6 — p))Np
Np—piN=p)=(1=6=p)IN=p)  Np(m—1)—mp(N - p)’

m =

(iii) u € Wé’q(Q) if 1 <m < m, where

_ pim(l =6 — p))Np
m(1 —=8)[Np— (N - p)pi] - piNp

Remark 1.2. Notice that when p; = 2, the range of corresponding m values is exactly the summability
of solutions obtained in [14].
When p; = p, then problem (1.1) reduces to problem (1.6). Therefore

(1) If f € L™(Q) with m <m< %, then the solutions u to problem (1.6) satisfies u € L'(Q)
with
_mN(l—-6-p))
- mp—-N
(i) If f e L"(Q)with1 <m < m, then the solutions u to problem (1.6) satisfies u € Wl Q)
with g = 2NU-0-p)
9= 505N -

Theorem 1.3. Suppose that 6 = 1and 1 < p < N, f >0, f € L"(Q) with m > 1. Then there exists a
weak solution u to problem (1.1) such that

(i) ue L*(Q)ifm > m

t
(ii) MEL(Q)lf1<m<m where

B mp;Np
mpi(N — p) = Np(m — 1)’

Theorem 1.4. Let 6 > 1 and 1 < p < N. Suppose that f > 0, f € L"(Q) with m > 1. Then there exists
a weak solution u to problem (1.1) such that

(Z)MELOO(Q)Zf‘m>m

(ii) ue L'(Q) ifl <m < m where

__m(-6-p)Np
Np(m — 1) = mpi(N - p)

The order of the article is organized as follows: In Section 2, we provide basic notations and
algebraic inequalities needed in this paper, as well as some definitions and useful lemmas. In Section 3,
we present the proofs of Theorem 1.1, Theorem 1.3 and Theorem 1.4.
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2. Preliminaries and auxiliary results

2.1. Preliminaries

In this article, we will use the following notations:
For any v, we denote by v* = max{v,0}, v~ = max{—v,0}. For p > 1, we denote by p’ =
mean the conjugate exponent of p.

p

pTlto

Definition 2.1. Let p > 1, Q ¢ RN with N > 2. The fractional Sobolev space W*?(Q) is defined by

|u(x) — u(y)l

N
lx —y[»™

WHP(Q) = {u e L7(Q): e L”(Q x Q)},

with

lu(x) — u(y)|P ’
llutl sy = (f |u(x)|”dx+ff()—]vgy>sdxdy) .
Q aJda X —yN*?

The space ‘W*P(R") and ‘W, (Q) are defined analogously. The space ‘W,”(Q) is defined as
WP(Q) ={ue W (RY):u=0 on R\ Q}.

Both ‘W*?(Q) and (W(S)’p (Q) are reflexive Banach spaces [31].

Recall that the Lebesgue space LP/(E) is defined as the space of p;-integrable functions u : E — R
with the finite norm

1

etll ri ey = (flu(X)l”"dX) ;
E

where p; € (1,+00) foralli =1,2,...,N.
The anisotropic Sobolev space is defined as follows:

WhPi(Q) = {u e WH(Q) : du € L”i(Q)} ,
and
Wy (@) = {u e W' (@) : & L@,

endowed with the norm
N
il 11y = D, 1Bl 2.1)
i=1
Definition 2.2. A function J: W(l)”’ " — R is defined to be weakly lower semi-continuous if
J () < liminf 9 (u,),
for any sequence u, approaching u € ’W(l)’p " in the weak topology on ‘W(l)’p ’.

AIMS Mathematics Volume 8, Issue 10, 24862-24887.
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The zero Dirichlet boundary condition in this paper is defined as follows
Definition 2.3. We say that # < 0 in RM\Q if # = 0 in RV\Q and for any € > 0, we have
(u—e)" € Wy (Q).

We say that u = 0 on RM\Q, if u is nonnegative and u < 0 in R¥\Q
The definition of weak solution in this paper is defined as
Definition 2.4. A positive function u € Wlt)’f "(Q) N LP~Y(RY) is a weak solution to problem (1.1) if

u>0inQ, u=0in R"\Q, f() Lhc(Q)

for every ¢ € C!(Q), we have that
3 £(x)
Elﬂmmwzmmmwmif Ku(x, y)(@(x) = ¢0))dp = S¢dx,  (22)
in1 VO D(Q) o u(x)

where
DEQ) =RY xRV \ (Q° x Q),
and
Ku(x,y) = lu(x) = u@)P > @(x) — u(y)), du=lx—y|"" " dxdy.
Lemma 2.5. [19, Theorem 1.2] There exists a positive constant C, such that for every u € WPi(Q)
we have
N
2. ) < € D 10t g (2.3)
i=1
where
1 1451
TN L
and
_,_ Np_
N-p
Lemma 2.6. [32, Lemma 2.1] Let 1 < p; < oo. Then for &, n € RY, there exists a constant C = C(p;) >
0 such that
cplé —mlP's  if pi = 2, (2.4)

EP2E = g, € — ) > P ,
< > cl)’m lfl < pi < 2.

R* be a non-increasing function such that

Lemma 2.7. [33, Lemma 2.1] Let f: R*
Muy(k)*
v forallh >k >0,

Wl < =

where M > 0, @ > 1 and 8 > 0. Then y(d) = 0, where d? = Cy(0)*~'2@-D
Volume 8, Issue 10, 24862-24887.
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2.2. Auxiliary results

Forn € N, f(x) € L'(Q) and f(x) > 0, let f,(x) := min{f(x),n} and we consider the following
approximated problem
—Apity(x) + (~A)S uy(x) = LU xeQ,

(wr+5)”

up(x) > 0, x € Q, (2.5)
u,(x) =0, xeRV\ Q.

First, we consider the following useful result.

Lemma 2.8. Let g(x) € L*(Q), g(x) > 0. Then the following elliptic problem

—Apu(x) + (=A), u(x) = g(x), x€Q,
u(x) > 0, x€Q, (2.6)
u(x) =0, xeRV\ Q,

has a unique positive weak solution u € (Wé’p Q).

Proof. Existence : Define the energy functional 7 : ‘W(])’p ‘(Q) —> Ras

J W) = J1(u) + J>(u) — J3(u),

where
N
Jiw) =) — f 0;u(x)|” dx,
: ;Pi Q
1 lu(x) — u(y)l”
gL [ [ Mr,,
? p py X —yNtrs Y
and

J3w) = fg(x)u(x)dx.
Q
(i) By the Sobolev embedding theorem and g € L*(£2), we have

1 . p—1 )
v) > —|v|I”" — Q7 ollv — oo as |v||” — 00,
JW) ill IIWé,pi(Q) 1] 7" [Igll @) lVllr @ I IIW(;,F,.(Q)

which implies the J is coercive.

(1) (v) is weakly lower semi-continuous in ‘W(l)’p Q).

It easy to see that J;(u) is differentiable, according to [34, Lemma 3.4], we know that J;(u),i =
1,2 are weakly lower semi-continuous. On the other hand, we know that J3(u) is a bounded linear
functional. Thus J3(u) is continuous. Therefore, J is weakly lower semi-continuous and

liminf 9 (u,) = liminf 9 (u,) + liminf 95 (u,) — lim J3(u,)
>J1(w) + J2 — J3(w)
=9 (u).

AIMS Mathematics Volume 8, Issue 10, 24862-24887.
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Combining the above properties of J, we know that there exists a minimizer u € ‘W(l)’p "(Q) and
which is also a critical point of ', which also is the solution to Eq (2.6).

Uniqueness : Let u;, u, € ‘W(l)’p "(Q) be two solutions to problem (2.6). Thus, for any ¢ € (W(l)’p (Q),
we have

N

>, [1owouogdx+ [ [ Ko -eonau= [eet @)
—Ja DO o

and
N
Y, [y omdgars [ [ Koo -eondu= [ gedr @8
— Jo D(Q) Q

Choosing ¢ = u; — u, and then subtracting (2.7) and (2.8), we obtain
N
> [ (0™ s = 9 ) @, = D i
i=1 VO

" f f Kty (x, ¥) = Kun G ) [ty = 02) (6) = (= ) ()] e = . 2.9)
D)

Using Lemma 2.6, we get the first term of the left hand side of (2.9) is nonnegative. On the other hand,
by the monotonicity of the function f(r) = #*~!(p > 1), we have

[Kui (x, y) = K (ua(x, yD] [(1 = 1) (xX) = (1 = u2) ()]
=[Ju1 (xX) = iy O (1 (x) — w1 (1)) = u2(x) = wo WP (2(x) — us(y))]-
[(u1(x) = u1 (%) = (2(y) — u2(y))]
>0. (2.10)

Consequently,

N
D f (103011772 D01 ~ 8ol Byu2) Das ~ Byuz) dx = 0. 2.11)

Q

i=1

Therefore, u;(x) — ux(x) = C for all x € RY. Note that u; — u» = 0 on RVM\Q since u;(x) = 0 for
x € RM\Q. Thus u;(x) = u,(x), which implies that the solution of (2.6) is unique.
Boundedness : For any k > 1, decompose RY as RN = A, U A¢, where

A ={x e Q:u(x) >k},
A ={xeQ:0<ux) <k}

Taking G, (u) := (u — k)* = max{u — k, O} as a test function in (2.6), we have

N
>, [ 1w auconGuueondr+ [ | st (Gututo) - )] du
i=1

D)

= f g(xX)G(u(x))dx. (2.12)
Q

AIMS Mathematics Volume 8, Issue 10, 24862-24887.
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Obviously,

Ku(x,y) [Gi(u(x)) — Gr(u())]
= [u(x) — uWIP>((x) — u(y)) [(u(x) = b)* = (@) - k)*]
[u(x) — u(y)l?, if  u(x) > k,uly) >k,
lu(y) — u@P @) — k), if  u@y) >k > u(x),
lu(x) — u)P~ (u(x) = k), if  u(x) > k> u(y),
0, if  ulx) <kuly) <k,
> 0.

Therefore, combining (2.13) and (2.12) with Sobolev embedding theorem, we have
N N N
10,Gr(w)|” dx = f 10;G ()" dx + 10;G(u)|” dx
N
= Z 10,G ()" dxdx
i=1 YA

< f g(x)Gr(u)dx
Q

Pl
oF

L
<lIgll=@) (f Gk(u)p*dx) |A(k)| 7
Q

1

N PN L
<ClIgllz~ @) [Z f 10:G(w)|” dX) |ACK)| 7.
i=1 Y&

Therefore
N

: R NG D)
Z f 10:G )™ dx < Cligll 2 o) A7 PvD.
i=1 V&

For every 1 < k < h we know that A(h) C A(k) and u(x) — k > (h — k) in A(h), we get
(h = bPAM)]

PN

< ( f Gk(u)ﬁ*dx) ’
A(h)

PN

s( f Gk(u)f”‘dx)p
A(k)

N
<C f 10.G )l dx

% PN =D
<Cllgll7 y JAGR)| 7 on.
Hence, we have

p*

Cligl) X )
|A(h)| < WM(W””” -

(2.13)

(2.14)

AIMS Mathematics Volume 8, Issue 10, 24862-24887.
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Obviously,

Hence, using Lemma 2.7 we obtain
llul| =) < C.

Positivity : First, taking u_(x) := min{u(x), 0} as a test function in (2.6) and using g > 0, we have

N
> f 10 ()" dx + f f Ku(x,y) (u_(x) — u_(y)) du = f qu_dx <0, (2.15)
=T JO R Q

where Ku(x,y) = [u(x) — u(y)|P2(u(x) — u(y)). Rewrite

RV xRN = Uy A,

Denote,
A =1(x,y) € RV xRN 1 u(x) > 0, u(y) > 0},
Ay =1(x,y) € RV xRN : u(x) > 0, u(y) < 04,
Az =1(x,y) € RV xRN : u(x) < 0,u(y) > 0,
Ay =1(x,y) € RN xRN 1 u(x) < 0,u(y) < 0;.
Therefore,
Ku(x,y) (u_(x) —u_(y))
= |u(x) — u)P*(w(x) — u@)) U-(x) = u_(y))
0, if  (x,y) €Ay,
lu)I?, it (x,y) € Ay,
()7, if  (xy) € As,
|u(x) — u(y)”, if  (x,y) € Ay,
> 0.
Obviously,
lu(x) — u)P 2 (u(x) = u(y)) (u_(x) = u_(y)) > 0. (2.16)

Using (2.16) in (2.15) we obtain

f |Oju_|P"dx = 0.
Q

Therefore, u_ = C for all x € R". Note that u_ = 0 on R¥\Q since u_ := min{u, 0}. Thus u > 0 in Q.
Second, assume that there exists a point xy € € such that u(xy) = inf,co u(x) = 0, thus

N
i=1

AIMS Mathematics Volume 8, Issue 10, 24862-24887.
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N

_ 2 _
Zfai [|5iu(xo)|pi_28iu(XO)]+ff uxo) — u)I” N”(xO) M(Y)
i1 Y Q) x = y|Vepe
_ f f |—M(Y)|p_2[—u(y)]dy
o =y

ff |M()’)|p1
RV X — )’|N+‘”

This is a contradiction since g(xp) > 0. Hence, u > 0 in Q. O

Lemma 2.9. For any n € N, there exists a unique positive solution u, € (M/(l)’p Q) N LY(Q) to
problem (2.5). Moreover, The sequence {u,} is increasing with respect to n and

u,(x) > Cx >0 for K € Q.

Proof. Stepl. (Existence) Let n € N. By Lemma 2.8, for every u € (W(l)’p (Q) N L= (Q), there exists a
unique v € (W(l)”7 Q) N L=(Q) such that
—Apv(x) + (=A); v(x) = % xeQ,
v(x) > 0, xeQ, (2.17)
v(x) =0, xeRV\ Q.

Define the operator 7 : u — v = 7 (u), where v is the unique solution to (2.17). Choosing v as a

test function in (2.17), using Sobolev imbedding theorem, we obtain
1

1 N N
(Z f 10| dx) .
=1 Y

N ) PNG+D PN -1)
Z f [Ov(x)|P"dx < Cn w1 |Q|7*?v-D := R, (2.18)
Q

i=1

N L
Z f l0v(x)|" dx < f 1 v(x)dx < Cn® Q|7
i=1 Y& Q

Thus

which implies that the ball with radius R in (W(l)”7 (Q) remains unchanged under 7.

Now, we have to prove the continuity and compactness of 7, which is an operator from (W(l)’p Q)

Lpi
to (WO” Q).
(i) Continuity of 7: In order to do this, we have to show that lim;_. |[vi — V| = 0 if

=0, where vy = 7 (1) and v = 7 (u).

Lp;
WyPi(Q)

Choosing y(x) = vi(x)—v(x) as a test function of the equations of v, and v respectively, using (2.10),

we get
f |0k (01" dx
Q

N
S; fg 0;(vie(x) — v(x)|”" dx

AIMS Mathematics Volume 8, Issue 10, 24862-24887.
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N
<), f 10w Biwe(x) = BRI 30| [Bve(x) = Bv(0)] dx
Q

i=1

+ f [Kvi(x, ) = Kv(x, ] [(ve = v) (x) = (v = v) ()] de
D)

|

Using Holder and Sobolev inequalities we infer that
f /i) f O ) = v
2 (w4 )’
i o
f HX @)
0 o
offus)
p?’
< f A @
Q

J 1)
(I/tk + i) u

By (2.19) and (2.20), using [10, Lemma 2.2], we find

[vi(x) = v(x)]dx, if p; > 2. (2.19)

fn(x> S )}

Vk+

IA

dx| 0iVillrri)- (2.20)

10:VillLric)

1 1 1 :
<Cnri- jg‘z(uk_,_—_l)‘s_ﬁ

4 7
p; (pi=Dp}

dx

i s
1 l/l6 - (l/lk + %)
| [ lee )
Q

0
1) .6
(uk+ n) u

i 1
<Cnri- ZEM [f ju — uk|p;, dx] e , (2.21)
Q

. . . . 1,p;
since the pointwise convergence of ux — u in W, " (Q). we get

Therefore, in the case p; > 2, the operator 7~ is continuous from (Wé’p Q) to fWé’p Q).

(i1) Compactness of 7 : To achieve this, we have to show that, for some v € Wé’p '(Q), it holds

AIMS Mathematics Volume 8, Issue 10, 24862-24887.
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Let u; be a bounded sequence in ‘W(l)’p ‘(Q) and v; := 7 (uz). Then we have
w — win WyP(Q), wp — uin L'(Q), 1 <t < p’.

According to (2.18), we have ”T(”k)”w

Lri < C. Therefore there exists a subsequence, still denoted
0
by {u}, such that

T(u) = v € WP(Q), Tw)— veL(Q), 1 <t<p".

For any ¢ € ‘W(])’p"(Q),

N -2
Z f B2 v (x)Frpdx + f f Vi) = kI~ i) = vi) (o) — ) dy
= Ja DQ)

|x — y[V+ps

_ f D (2.22)
Q

)
(I/tk + %)
Now, we show that as k — oo, (2.22) converges to

y -2
> f B ()12 Bv(x);pdx + f f ) = VI () — vO)) () — )
=1 vQ D)

|x — y[Veps

_ f T, (2.23)
Q

oty

By the dominated convergence theorem, we have

lim ﬂ)(sgodx: f fol®) pdx,
Q

k—o0 Q(”k"’%)

and
N N
Z vy — Z 0;v pointwise almost everywhere in Q.
i=1 i=1

Therefore, for every ¢ € Cg, (€2), we have
N N
lim f 10V ()P % Qv (x)Dipdx = f 10:v(x)[72 8;v(x)dipdx.
k— o0 ; Q k k ; Q

Since ¢ € C'(Q) and v, is uniformly bounded in (W(l)’p (Q),

{|vk<x) — O ) - vk(y))} e 17 (R" xBY),
neN

N+ps

lx =yl 7

AIMS Mathematics Volume 8, Issue 10, 24862-24887.
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by the pointwise convergence of vi(x) to v(x)

V() = eI (%) = i) () = v (v(x) = v(3)) .oy
- a.e.in R™".

N+ps N+ps

lx =yl 7 lx =yl 7

Since

@(x) — @(y)

lx =yl

€ LP(R*Y),

we get that the (2.22) converges to the (2.23). Similarly, combining (2.21) and (2.18), we have

Tim 170 = T @y, = 0

Lp; =
paii(o)}

Therefore, the operator 7 is continuous from (W(I)’p ‘(Q) to (Wé’p ‘(). Then, Schauder fixed point
theorem implies the existence of a fixed points u, such that u, = 7 (u,), which is a weak solution to
approximated problem (2.5).

Step2. (Monotonicity) Since u, and u,,; are positive solutions to problem (2.8), for any ¢ €
W,"(Q), weh
o (), we have

N

>, [ oncor= duwadx+ [ [ Kuceineo - eonds
i=1 Y& D(Q)

Ja(%)

,(x) + 1)

and

M-

fwMAMW%MMWWM+ff Kt (6, )(0(3) — 9(3)di
Q

D(Q)
fn+1 (X)

(1 () + 555)

1

]

wdx. (2.25)

Il
5

Taking ¢ = (u,(x) — u,+1(x))" as test function in (2.24) and (2.25), we get

N

Z f 10i, O™ D14 (X)0; (14 (X) = 11 (X)) dx

-1 Y

+ f Ky (x, y) [Wn(x) = 1 (0))" = () = 1 ()] dt
D)

:jﬂ(—ﬁﬁﬁ—;omu>—mﬁmwrdx (2.26)
Q

1
Mn(-x) + n
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and
N

> f Orttsr (I Bit 1 (X); (1 () = 1 ()"l
Q

i=1

+ f K1 (X, ) [(Wn(%) = 11 ()" = (n(y) = w1 ()] dpe
D(Q)

:f [ Jr®) (0 = () dx 227)
Q

1
i1 () + 77)'

Since f,(x) < f,+1(x) for x € Q, we have

f l( Jn(X) _ Jr1(X) ] (U (X) = i1 (%)) dx

1)+ 1) (e (0 + 5

1 1
< f fn+1 ()C) } (Mn(X) — Upyi (-x))+ dx
Q

 (ax) + 1) (un+1<x> +h
0

= [ for0 (M"”(XH"?) L)
| (10 + ) () + 25)’

} (14 (%) = 41 (x))" dx

(2.28)

Subtracting (2.26) with (2.27) and using the (2.28), we obtain

N
> f 1832, (O Br1t () = 0rtt 1 (O Brth1 ()| By (14 (X) = 1 (1)) " dx

+ IL(Q) (Ku(x, y) - K (x, y)) [(un(x) - l/tn+1(x))+ - (un(y) — un+l(y))+] dﬂ <0. (2.29)
Following the argument in the proof of [35, Lemma 9], we obtain
ff (Kun(x,y) — Kutyr1(x, y)) [(un(x) — U1 (X))" — (un(y) — un+1()}))+] du > 0. (2.30)
DQ)

Therefore, applying (2.30) in (2.29) we get

N
> f 1114, GO Bitt () = |Bitt 1 (O™ ity 1 (X)| B () = 11 (x))*dx < 0.
i=1 Y&

Using Lemma 2.6 we obtain
(Uy(X) — Ups1 (x))T = C for all x € RV,

Note that u,(x) = u,,(x) = 0 on R¥\Q thus C = 0, which implies that u,,;(x) > u,(x) in Q.

Step3. (Uniform Positivity) Let u; solves (2.6). By Lemma 2.8, for every K € Q, there exists a
constant Cx > 0 such that u; > Cx > 0 in K. Again, since the monotonicity of u,, we have u, > u; in
K. Therefore, for any K € Q,

u,(x) > Cg >0, for x € K.

O
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3. Proof of main results

In order to prove the existence of positive solution to (1.1), we use the sequence of solutions u, of
problem (2.5). Then we need a priori estimates on u,,.

3.1. Auxiliary lemma

Lemma 3.1. Let0 <6 < 1and 1 < p < N. Suppose that f > 0, f € L"(Q) with

Np
m>m P

T Np—-p(N-p)—(=b-p)N—p)

Then, the sequence solutions u,, to the approximate problem (2.5) such that

(i) up € L™(Q) if m > —2L

Np-pn(N=p)*

.. (1-6—p;)Np .
(i) u, € L'(Q), where t = m if

Np e Np
m .
Np—-pi(N—-p)—(1-6-p)N - p) Np - py(N - p)

Proof. (i) Let Ay = {x € Q: u,(x) > k}. Choosing G(u) := (u—k)" € ‘W(l)’p"(Q) as a test function
in (2.5), we get

N
> fg 0114 (O Bit ()0, Glaay (X))l x + f f@ Kt (x,3) [Gilata () = Gl ()] dp
i=1

()

- f I Gy @3.1)
o

u,(x) + %
Foe any k£ > 1, by (2.13) we know that,

Kun(x,y) [Gr(un(x)) = Gr(un(y))] = 0.

By Holder inequality, Sobolev embedding theorem, f,(x) < f(x) and (3.1), we have

N
>, [ 166w ax
i=1 V&

N
= 10,Gi(un)I” dx
i=1 YAk
< [ O Giuas
Q (un(x) + }l)

< f FOGE ) dx
Ay
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1-6

S(jwfuwd%m([khWJﬁdﬁpIA@wﬂ%;5
Ay o

1=
P

’% Y N 1 1-6
SC( f f(x)’”dx) (Z f |6in(u,1)|”idx] A7 (3.2)
Ak i=1 V@

Hence

N . m(pzf/}l/é—]) (]_i_@) N
> f 0:G )l dx < C f fx)"dx A1 e,
=1 YQ Ay

Leth > k > 1, we know that A, C A; and G(u,,) = h — k for in €, we have that

PN
|h — kIPM ALl

s( f Gk(un)f’*dx)p s( f Gk(u,,)ﬁ*dx)p
A(h) A(k)

N
+ _l_Ls N
SCZ[ 10,Gr(u,)I" dx < CIIfIIZZ(fZ)1 A1+ 7
i=1 YAK
Therefore
P +5 T _7_75 ,,ﬁ%
< AL
- = k7
Note that
1 1=-6 _
 [—— p o1
n p* Jpv+do-1
if m > %. Hence, apply Lemma 2.7 with
N 1 1-6 7
M=C ”Z‘% >0, =11-—— o1 >0 | .
”f”L Q) a ( m ﬁ* )pN"‘(s_l ﬁ an l//( ) | kl

there exists ky such that (k) = 0 for all kK > k,. Thus,
ess supq u < ky.

(ii) Choose u” 7" P*! (y > 1) as test function in (2.17), we have
N
>, f Ot Dty Dy D e + f Kitn(x, ) [ (0" = 10, (0?04 |
Q D(Q)

:f( Ja(x) 6un(x)p,-(y—1)+1dx_ (3.3)

Q(u,(x) + %
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According to [10, Lemma 2.2], we have

Kt (x, ) [0, (07O =y, ()P 0D ]
=1, (3) ~ 1, 0,0) = 1,00 [, (O — 1, (00|

>C [1,(x) + (M ] ™ |1, (x) — u, ()P
>0.

Combining (3.4) and (3.3), and using Holder inequality, we get

fl@u P72 8,u,,0; u”’” D+
l—l

N

f o e

n

< f f(x)uﬁ"(y_l)”_‘sdx
Q

i +1-6
S”f”L’”(Q) (f [pi(y=D+ m’ dx)
Q

IA

By Sobolev inequality,
N
> f [piy = 1)+ 11100 ) Vdx
i=1
N .
Zf[ (y—1)+1]( ) 64" dx
' Jo
>C ( f uZ_*) .
Q
Therefore,

PN

1
7 n’
p* i(y=1D)+1=61m’
( [ uZ”) SCllfllm(Q)( [ e ]’") .
Q Q

Now we choose vy such that

yo' =[pty-1D)+1-6]m
that is

_ m(=6-p)N-p)
Np(m = 1) = pm(N = p)’

(3.4)

(3.5)
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Since y > 1, we know

Np <m
Np-p(N-p)—(1-6-p)(N-p)

Thus ;—’f > L gives

(f Mn(x)yﬁ*) < Cllfllzmc-
Q

Therefore, u, is uniformly bounded in L'(Q) with ¢t = yp*

Lemma 3.2. Let0 <6 < 1and 1 < p < N. Suppose that f > 0 and f € L"(Q) with

Np
1<m<
Np—-pi(N-p)—(1-6-p)(N -

p)
Then, the sequence solutions {u,} to the approximate problem (2.5) are uniformly bounded in ‘W ! Q)
with

q= pim(l —6 — p)Np
m(1 = 6)[Np - (N - p)pi] = piNp
Proof. Similar to above taking 12~ V"

as test function in (2.5) with Z2=! < y < 1. However, this

pi ’
option is not acceptable, since the gradient of such a test function will be singular where u,(x) = 0
Hence, for n fixed, choose (u, + &)Pv=D+! —

g1 (0 < £ < 1) as test function in (2.5), we get
N

+ g)Pir=DHl _ gpity=D+1
Z pl(y - 1) + l fla un|p’ (un + 8)171 ')/ l)dx < f(x) (u 8) & ]

1 0
i=1 (I/tn+ n)

dx.
By f,(x) < f(x) and &£ < 1, we have

N
Dmy-1+1] f Ot (uy + )0 Vdlx < f FE)y + )07 0,
i=1 Q

Q

(3.6)
By Sobolev inequality,
N
Z [pi(ty — 1) + 1] flﬁ " (u, + 8" Vdx
i=1
N 1 pi
=Y Ipty =1 +1] f( ) 10; [y + £)" — 711" dx
i=1 7
Q
N
>C Z f 10; [(u, + )Y — &'11" dx
i=1
Q
1%\{1
>C ( f [(u, + &) =& dx) (3.7)
Q
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Hence, by (3.6) and (3.7), we get

(f [(un + 8))’ - 87]1_7* dX)p* < C f f(x)(un + 8)P1(7_1)+1—(5dx.
Q Q

Let € — 0, we have

(f uZp*dx)p. SCff(x)uﬁ"(V_l>+l_6dx.
o o

—-DNp

If m = 1, we choose y = 22— in the (3.8), so that u, € L (Q).
If m > 1, from the proof of Lemma 3.1, we get that u,(x) € L'(QQ) with
_ m(1-5-p)Np
Np(m—1) = pm(N — p)’

Since y < 1, by (3.6), we have

N

Z f (utn lit";lp T Z f|aiun|pi (uy + &) Pidx <C.

:1Q

We can apply Holder inequality (since g < p;),

fl@iun|q dx
Q

|6iun|q

(un + 8)(1_7)(1
Q

f

(u, + &)17dx

|aiun|pi

(u +8)(1 —Y)pi

Pi Pi
|01, |”" (1=y)q-Li
(uy + &)V dx (uy + &) 7nidx
Q

A-Ypigq "
C (un +&) rit dx .

] (u, + &)1 x

Choice y and g such that
(A =Yprig _
pPi—4q
Therefore, u, € ‘W(])’q(Q) with

_ pm(l —6— p)Np
m(l —=6)[Np— (N — p)pi] — piNp

(3.8)

O
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Lemma 3.3. Suppose that 6 = 1and1 < p < N, f >0, f € L"(Q) with m > 1. Then there exists a
weak solution u, to problem (2.5) such that

(i) Ifm > m, Then u, € LOO(Q)

(ii) If 1 <m < Then u, € L'(QY), where

Np=-pn (N by

_ mp;Np
pim(N — p) = Np(m — 1)’

Proof. The proof of (i) is identical to that of Lemma 3.1, so we will omit it.
As for (ii), observe that if m = 1, then ¢ = = p*. If m > 1, similar to Lemma 3.1, Choosing

ul’ ™! as test function in (2.5), we know that there is

A €
p* m’
—% i _‘l ’
(f I/l?,’lp dX) SC”f”Lm(Q) (f I/tn(X)p (y=Dm )
Q Q

yp' = [pity - )m

Choose vy such that

Obviously

mp;(N — p)
mp;(N — p) = Np(m — 1)’

’)/:

Since y > 1, we arrive at 1 < m. Thus & > L being
P m

Np
Np - py(N - p)’

so that u, € L'(QQ) with t = yp*. O

m<

Simple modifications to the proof of Lemma 3.1 enable us to demonstrate Lemma 3.4.

Lemma 3.4. Suppose thatd > 1and 1 < p < N, f >0, f € L"(Q) with m > 1. Then there exists a
weak solution u,, to problem (2.5) such that

(i) Ifm > m, then u, € LM(Q)

(ii) If 1 <m < then u, € L'(Q) with

Np-pn (N D)’
___ m(-6-p)Np
Np(m — 1) — pam(N - p)’

Proof. The proof of (7) is identical to that given in Lemma 3.1, so we omit it.

For (ii), by [21, Lemma 3.7], we known, if m = 1, the sequence u, " 1is uniformly bounded in
lp '(Q), This also gives u,, is bounded in Wllo’f"(Q),
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Ifl<m< m, similar to Lemma 3.1, taking un"(y_l)Jrl as test function in (2.5), this time with
y > 1 since y > 6+’;f_1, we have

p

A i
p* m’
7% i —1 1- /
(f ”Zp dx) SC||f||Lm(g) (f un(x)[p (y-D+ 6]m) _
Q Q

Choosing y in such a way that

yp'=[piy-1)+1-6]m,

since y > ‘Sﬂp’—_l gives m > 1, and by &t > -+ being
N5
m< —— P —.
Np — pn(N = p)
Therefore, u, is uniformly bounded in L'(Q) as well. ]

3.2. Proof of main theorem

In this section, we give the proof of Theorem 1.1 by the approximate method.

Proof of Theorem 1.1. Let f € L™(Q). By Lemma 3.2 and 3.1, we know that the solutions u, to
problem (2.5) are bounded in ‘W(l)"’7 (Q). Then, the pointwise limit « in ‘W(l)’p Q) N LP1(Q). For any
o € Wm(Q),

N

>, [ uncoromwads+ [ Kuntxietn - eond
-1 YQ D)
_ f D g (3.9)
Q (un(x) + %)
Then, for any ¢ € CL(Q), we get
N N
lim f 101, ()P 72 01, (x)Dypdx = f 10;u(x)P2 B;u(x)d;pd x. (3.10)

Since {u,} is uniformly bounded in W(l)”’ (Q),

i () = O (10 (X) = (1)) c

N+ps

lx —y[ 7

L (RN X RN) :

By point-wise convergence of u,(x) to u(x)

10 (X) = U IP ™ (U () = (1)) _, Jut) —u)l” 2 (u(x) — u(y)) .

N+ps N+ps

lx =yl 7 lx =yl 7

e. in R?,
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Then, we have

n—oo

lim f Ku,(x, y)(@(x) — (¥))du = f f Ku(x,y)(@(x) — o(y)du. (3.11)
D) D(Q)

By Lemma 2.9, for any K € Q, u,(x) > Cx > 0 with supp(¢) = Cx > 0. Therefore, for any ¢ € C}(Q)
such that

Jn(X) gl < ||Q0||L°°(Q)|f| in O
1 e
(u,,(x) + Z) K
We conclude that
lim f Lﬁmx i (x)6¢dx. (3.12)
= Ja (un(x) + l) o u(x)

Finally, passing to the limit in (3.9), we conclude that

N
_ (x)
Z f 100" O;u(x)dpdx+ f Ku(x, y)(@(x) — p(y))du = f f—(gsodx,
i Jo DOQ) Q (u(x) + %)
for all ¢ € C!(€), which shows that u is a solution to problem (1.1) and u € (W(l)’q(Q). O

Proof of Theorem 1.3 and Theorem 1.4. The proof of Theorem 1.3 and 1.4 are similar, here we omit
the details. o

4. Conclusions

The manuscript establishes the existence of solutions to mixed local and nonlocal anisotropic
quasilinear singular elliptic eqautions. The interplay between the integrability and the singularity
power is investigated. This results generalizes and complements the existing results.
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