Research article

An extension of mathematical model for severity of rice blast disease

  • Received: 22 August 2022 Revised: 14 October 2022 Accepted: 19 October 2022 Published: 02 November 2022
  • MSC : 92D25, 92D30

  • This paper aims to extend the spore dispersal model to the Healthy-Latent-Infectious-Removed (HLIR) epidemic model for assessing the severity of rice blast disease. The model was solved by the Finite Difference Method (FDM). The results of the model were compared to data from the Prachinburi Rice Research Center (PRRC) on the severity of rice blast disease. Because of a small error, the comparison results showed good agreement between the PRRC data and the simulation by looking at the value of Willmott's index of agreement ($ d $). The first bed $ d $ was 0.7166, while the second bed $ d $ was 0.6421, indicating the model's performance. Furthermore, the optimal parameter, the fraction of spores deposited on the crop, was determined to be 0.173 and 0.016 for beds 1 and 2, respectively. The model can simulate and analyze rice blast outbreaks for educational purposes in future preparedness planning.

    Citation: Saharat Tabonglek, Amir Khan, Usa Wannasingha Humphries. An extension of mathematical model for severity of rice blast disease[J]. AIMS Mathematics, 2023, 8(1): 2419-2434. doi: 10.3934/math.2023125

    Related Papers:

  • This paper aims to extend the spore dispersal model to the Healthy-Latent-Infectious-Removed (HLIR) epidemic model for assessing the severity of rice blast disease. The model was solved by the Finite Difference Method (FDM). The results of the model were compared to data from the Prachinburi Rice Research Center (PRRC) on the severity of rice blast disease. Because of a small error, the comparison results showed good agreement between the PRRC data and the simulation by looking at the value of Willmott's index of agreement ($ d $). The first bed $ d $ was 0.7166, while the second bed $ d $ was 0.6421, indicating the model's performance. Furthermore, the optimal parameter, the fraction of spores deposited on the crop, was determined to be 0.173 and 0.016 for beds 1 and 2, respectively. The model can simulate and analyze rice blast outbreaks for educational purposes in future preparedness planning.



    加载中


    [1] D. O. TeBeest, C. Guerber, M. Ditmore, 2007, Rice blast, The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2007-0313-07. Reviewed 2012.
    [2] N. L. Suriani, D. N. Suprapta, N. Nazir, N. M. S. Parwanayoni, A. A. K. Darmadi, D. A. Dewi, et al., A mixture of piper leaves extracts and rhizobacteria for sustainable plant growth promotion and bio-control of blast pathogen of organic bali rice, Sustainability, 12 (2020), 8490. https://doi.org/10.3390/su12208490 doi: 10.3390/su12208490
    [3] M. E. Jarroudi, H. Karjoun, L. Kouadio, M. E. Jarroudi, Mathematical modelling of non-local spore dispersion of wind-borne pathogens causing fungal diseases, Appl. Math. Comput., 376 (2020), 1–11. https://doi.org/10.1016/j.amc.2020.125107 doi: 10.1016/j.amc.2020.125107
    [4] B. Hau, C. J. de Vallavieille-Pope, Wind-dispersed diseases, In: The epidemiology of plant diseases, Netherlands: Springer, 2006.
    [5] S. Kirtphaiboon, U. Humphries, A. Khan, A. Yusuf, Model of rice blast disease under tropical climate conditions, Chaos Soliton. Fract., 143 (2021), 1–8. https://doi.org/10.1016/j.chaos.2020.110530 doi: 10.1016/j.chaos.2020.110530
    [6] A. S. Kapoor, R. Prasad, G. Sood, Forecasting of rice blast in Kangra district of Himachal Pradesh, Indian Phytopathol., 57 (2004), 440–445.
    [7] W. Li, J. Ji, L. Huang, Dynamics of a controlled discontinuous computer worm system, Proc. Amer. Math. Soc., 148 (2020), 4389–4403. https://doi.org/10.1090/proc/15095 doi: 10.1090/proc/15095
    [8] W. Li, J. Ji, L. Huang, Z. Guo, Global dynamics of a controlled discontinuous diffusive SIR epidemic system, Appl. Math. Lett., 121 (2021), 107420. https://doi.org/10.1016/j.aml.2021.107420 doi: 10.1016/j.aml.2021.107420
    [9] S. Tabonglek, U. W. Humphries, A. Khan, Mathematical model for rice blast disease caused by spore dispersion affected from climate factors, Symmetry, 14 (2022), 1131. https://doi.org/10.3390/sym14061131 doi: 10.3390/sym14061131
    [10] J. B. Burie, A. Calonnec, M. Langlais, Modeling of the invasion of a fungal disease over a vineyard, Model. Simu. Sci. Eng. Tec., 2 (2008), 11–21. https://doi.org/10.1007/978-0-8176-4556-4_2 doi: 10.1007/978-0-8176-4556-4_2
    [11] C. J. Willmott, S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, et al., Statistics for the evaluation and comparison of models, J. Geophys. Res. Oceans, 90 (1985), 8995–9005. https://doi.org/10.1029/JC090iC05p08995 doi: 10.1029/JC090iC05p08995
    [12] M. H. Ali, I. Abustan, A new novel index for evaluating model performance, J. Nat. Resour. Dev., 4 (2021), 1–9. https://doi.org/10.5027/jnrd.v4i0.01 doi: 10.5027/jnrd.v4i0.01
    [13] F. van den Bosch, J. A. J. Metz, J. C. Zadoks, Pandemics of focal plant disease, a model, Phytopathology, 89 (1999), 495–505. https://doi.org/10.1094/PHYTO.1999.89.6.495 doi: 10.1094/PHYTO.1999.89.6.495
    [14] S. Lee, C. Masclaux-Daubresse, Current understanding of leaf senescence in rice, Int. J. Mol. Sci., 22 (2021), 1–19. https://doi.org/10.3390/ijms22094515 doi: 10.3390/ijms22094515
    [15] S. Bregaglio, P. Titone, G. Cappelli, L. Tamborini, G. Mongiano, R. Confalonieri, Coupling a generic model to the WARM rice simulator to assess leaf and panicle blast impact in a temperature climate, Eur. J. Agron., 76 (2016), 107–117. https://doi.org/10.1016/j.eja.2016.02.009 doi: 10.1016/j.eja.2016.02.009
    [16] T. Gilet, L. Bourouiba, Fluid fragmentation shapes rain-induced foliar disease transmission, J. Roy. Soc. Interface, 12 (2015), 1–12. https://doi.org/10.1098/rsif.2014.1092 doi: 10.1098/rsif.2014.1092
    [17] O. Singh, J. Bathula, D. K. Singh, Rice blast modeling and forecasting, Int. J. Chem. Stud., 7 (2019), 2788–2799.
    [18] S. Savary, A. Nelson, L. Willocquet, I. Pangga, J. Aunario, Modeling and mapping potential epidemics of rice disease globally, Crop Prot., 34 (2012), 6–17. https://doi.org/10.1016/j.cropro.2011.11.009 doi: 10.1016/j.cropro.2011.11.009
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1831) PDF downloads(146) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog