Research article Special Issues

Skewness and the crossing numbers of graphs

  • Received: 28 March 2023 Revised: 12 July 2023 Accepted: 21 July 2023 Published: 07 August 2023
  • MSC : 05C10, 05C62

  • The skewness of a graph $ G $, $ sk(G) $, is the smallest number of edges that need to be removed from $ G $ to make it planar. The crossing number of a graph $ G $, $ cr(G) $, is the minimum number of crossings over all possible drawings of $ G $. There is minimal work concerning the relationship between skewness and crossing numbers. In this work, we first introduce an inequality relation for these two parameters, and then we construct infinitely many near-planar graphs such that the inequality is equal. In addition, we give a necessary and sufficient condition for a graph to have its skewness equal to the crossing number and characterize some special graphs with $ sk(G) = cr(G) $.

    Citation: Zongpeng Ding. Skewness and the crossing numbers of graphs[J]. AIMS Mathematics, 2023, 8(10): 23989-23996. doi: 10.3934/math.20231223

    Related Papers:

  • The skewness of a graph $ G $, $ sk(G) $, is the smallest number of edges that need to be removed from $ G $ to make it planar. The crossing number of a graph $ G $, $ cr(G) $, is the minimum number of crossings over all possible drawings of $ G $. There is minimal work concerning the relationship between skewness and crossing numbers. In this work, we first introduce an inequality relation for these two parameters, and then we construct infinitely many near-planar graphs such that the inequality is equal. In addition, we give a necessary and sufficient condition for a graph to have its skewness equal to the crossing number and characterize some special graphs with $ sk(G) = cr(G) $.



    加载中


    [1] M. O. Albertson, Chromatic number, independence ratio, and crossing number, ARS Math. Contemp., 1 (2008), 1–6. https://doi.org/10.26493/1855-3974.10.2d0 doi: 10.26493/1855-3974.10.2d0
    [2] C. Bachmaier, F. J. Brandenburg, K. Hanauer, D. Neuwirth, J. Reislhuber, NIC-planar graphs, Discrete Appl. Math., 232 (2017), 23–40. https://doi.org/10.1016/j.dam.2017.08.015 doi: 10.1016/j.dam.2017.08.015
    [3] J. A. Bondy, U. S. R. Murty, Graph theory, GTM 244, Springer, 2008.
    [4] J. Barát, G. Tóth, Improvements on the density of maximal 1-planar graphs, J. Graph Theory, 88 (2018), 101–109. https://doi.org/10.1002/jgt.22187 doi: 10.1002/jgt.22187
    [5] S. N. Bhatt, F. T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. Syst. Sci., 28 (1984), 300–343. https://doi.org/10.1016/0022-0000(84)90071-0 doi: 10.1016/0022-0000(84)90071-0
    [6] G. L. Chia, K. A. Sim, On the skewness of the join of graphs, Discrete Appl. Math., 161 (2013), 2405–2409. https://doi.org/10.1016/j.dam.2013.03.023 doi: 10.1016/j.dam.2013.03.023
    [7] M. Chimani, C. Gutwenger, Non-planar core reduction of graphs, Discrete Math., 309 (2009), 1838–1855. https://doi.org/10.1016/j.disc.2007.12.078 doi: 10.1016/j.disc.2007.12.078
    [8] R. J. Cimikowski, Graph planarization and skewness, Congr. Numer., 88 (1992), 21–32.
    [9] S. Cabello, B. Mohar, Adding one edge to planar graphs makes crossing number and 1-planarity hard, SIAM J. Comput., 42 (2013), 1803–1829. https://doi.org/10.1137/120872310 doi: 10.1137/120872310
    [10] Z. Ding, Z. Ouyang, Y. Huang, F. M. Dong, New upper bounds for the crossing numbers of crossing-critical graphs, Discrete Math., 345 (2022), 113090. https://doi.org/10.1016/j.disc.2022.113090 doi: 10.1016/j.disc.2022.113090
    [11] M. R. Garey, D. S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods, 4 (1983), 312–316. https://doi.org/10.1137/0604033 doi: 10.1137/0604033
    [12] A. Liebers, Planarizing graphs–A survey and annotated bibliography, J. Graph Algorithms Appl., 5 (2001), 1–74.
    [13] P. C. Liu, R. C. Geldmacher, On the deletion of nonplanar edges of a graph, Congressus Numerantium, 24 (1979), 727–738.
    [14] D. McQuillan, S. Pan, R. B. Richter, On the crossing number of $K_13$, J. Combin. Theory, Ser. B, 115 (2015), 224–235. https://doi.org/10.1016/j.jctb.2015.06.002 doi: 10.1016/j.jctb.2015.06.002
    [15] M. Schaefer, Crossing numbers of graphs, CRC Press, Florida, 2017.
    [16] X. Zhang, G. Liu, The structure of plane graphs with independent crossings and its application to coloring problems, Centr. Eur. J. Math., 11 (2013), 308–321. https://doi.org/10.2478/s11533-012-0094-7 doi: 10.2478/s11533-012-0094-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1055) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog