Research article Special Issues

Fractional resolvent family generated by normal operators

  • Received: 17 May 2023 Revised: 22 June 2023 Accepted: 07 July 2023 Published: 04 August 2023
  • MSC : 35R11, 47B02, 47A10

  • The main focus of this paper is on the relationship between the spectrum of generators and the regularity of the fractional resolvent family. We will give a counter-example to show that the point-spectral mapping theorem is not valid for $ \{S_{\alpha}(t)\} $ if $ \alpha \neq 1 $; and we show that if $ \{S_{\alpha}(t)\} $ is stable, then we can determine the decay rate by $ \sigma(A) $ and some examples are given; we also prove that $ S_{\alpha}(t)x $ has a continuous derivative of order $ \alpha\beta > 0 $ if and only if $ x \in D(I-A)^{\beta} $. The main method we used here is the resolution of identity corresponding to a normal operator $ A $ and spectral measure integral.

    Citation: Chen-Yu Li. Fractional resolvent family generated by normal operators[J]. AIMS Mathematics, 2023, 8(10): 23815-23832. doi: 10.3934/math.20231213

    Related Papers:

  • The main focus of this paper is on the relationship between the spectrum of generators and the regularity of the fractional resolvent family. We will give a counter-example to show that the point-spectral mapping theorem is not valid for $ \{S_{\alpha}(t)\} $ if $ \alpha \neq 1 $; and we show that if $ \{S_{\alpha}(t)\} $ is stable, then we can determine the decay rate by $ \sigma(A) $ and some examples are given; we also prove that $ S_{\alpha}(t)x $ has a continuous derivative of order $ \alpha\beta > 0 $ if and only if $ x \in D(I-A)^{\beta} $. The main method we used here is the resolution of identity corresponding to a normal operator $ A $ and spectral measure integral.



    加载中


    [1] L. Abadias, P. Miana, A subordination principle on Wright functions and regularized resolvent families, J. Funct. Spaces, 2015 (2015), 1–9. https://doi.org/10.1155/2015/158145 doi: 10.1155/2015/158145
    [2] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace transforms and Cauchy problems, Birkhäuser Basel, 2010. https://doi.org/10.1007/978-3-0348-0087-7
    [3] C. J. K. Batty, A. Gomilko, Y. Tomilov, Resolvent representations for functions of sectorial operators, Adv. Math., 308 (2016), 896–940. https://doi.org/10.1016/j.aim.2016.12.009 doi: 10.1016/j.aim.2016.12.009
    [4] E. G. Bajlekova, Fractional evolution equations in Banach spaces, Department of Mathematics, Eindhoven University of Technology, 2001. https://doi.org/10.6100/IR549476
    [5] C. Chen, M. Li, F. B. Li. On boundary values of fractional resolvent families, J. Math. Anal. Appl., 384 (2011), 453–467. https://doi.org/10.1016/j.jmaa.2011.05.074 doi: 10.1016/j.jmaa.2011.05.074
    [6] R. Chill, Y. Tomilov, Operators $L^{1}(R_{+}) \rightarrow X$ and the norm continuity problem for semigroups, J. Funct. Anal., 256 (2009), 352–384. https://doi.org/10.1016/j.jfa.2008.05.019 doi: 10.1016/j.jfa.2008.05.019
    [7] R. Donninger, B. Schrkhuber, A spectral mapping theorem for perturbed Ornstein-Uhlenbeck operators on $L^{2}(\mathbb R^{d})$, J. Funct. Anal., 268 (2015). https://doi.org/10.1016/j.jfa.2015.03.001 doi: 10.1016/j.jfa.2015.03.001
    [8] K. J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, New York: Springer, 2000. https://doi.org/10.1007/b97696
    [9] H. O. Fattorini, A note on fractional derivatives of semigroups and cosine functions, Pac. J. Math., 109 (1983), 335–347. https://doi.org/10.2140/pjm.1983.109.335 doi: 10.2140/pjm.1983.109.335
    [10] A. Gomilko, M. Haase, Y. Tomilov, Bernstein functions and rates in mean ergodic theorems for operator semigroups, J. Anal. Math., 118 (2012), 545–576. https://doi.org/10.1007/s11854-012-0044-0 doi: 10.1007/s11854-012-0044-0
    [11] A. Gomilko, Y. Tomilov, On subordination of holomorphic semigroups, Adv. Math., 283 (2015), 155–194. https://doi.org/10.1016/j.aim.2015.05.016 doi: 10.1016/j.aim.2015.05.016
    [12] A. Gomilko, Y. Tomilov, On convergence rates in approximation theory for operator semigroups, J. Funct. Anal., 266 (2014), 3040–3082. https://doi.org/10.1016/j.jfa.2013.11.012 doi: 10.1016/j.jfa.2013.11.012
    [13] A. Gomilko, S. Kosowicz, Y. Tomilov, A general approach to approximation theory of operator semigroups, J. Math. Pure. Appl., 2018. https://doi.org/10.1016/j.matpur.2018.08.008 doi: 10.1016/j.matpur.2018.08.008
    [14] R. Grande, Space-time fractional nonlinear Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 4172–4212. https://doi.org/10.1137/19M1247140 doi: 10.1137/19M1247140
    [15] M. Haase, The functional calculus for sectorial operators, Basel: Birkhäuser Verlag, 2006. https://doi.org/10.1007/3-7643-7698-8
    [16] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779
    [17] H. Komatsu, Fractional powers of operators, Pac. J. Math., 19 (1966), 285–346. https://doi.org/10.2140/pjm.1966.19.285 doi: 10.2140/pjm.1966.19.285
    [18] M. Li, C. Chen, F. B. Li, On fractional powers of generators of fractional resolvent families, J. Funct. Anal., 259 (2010), 2702–2726. https://doi.org/10.1016/j.jfa.2010.07.007 doi: 10.1016/j.jfa.2010.07.007
    [19] M. Li, Q. Zheng, J. A. Goldstein, On spectral inclusions and approximations of $\alpha$-times resolvent families, Semigroup Froum, 69 (2004), 356–368. https://doi.org/10.1007/s00233-004-0128-y doi: 10.1007/s00233-004-0128-y
    [20] M. Li, J. Pastor, S. Piskarev, Inverses of generators of integrated fractional resolvent functions, Frac. Calc. Appl. Anal., 21 (2018), 1542–1564. https://doi.org/10.1515/fca-2018-0081 doi: 10.1515/fca-2018-0081
    [21] J. Mei, C. Chen, M. Li, A novel algebraic characteristic of fractional resolvent families, Semigroup Froum, 99 (2019), 293–302. https://doi.org/10.1007/s00233-018-9964-z doi: 10.1007/s00233-018-9964-z
    [22] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1993.
    [23] R. S. Phillips, On the generation of semigroups of linear operators, Pac. J. Math., 2 (1952) 343–369. https://doi.org/10.2140/pjm.1952.2.343 doi: 10.2140/pjm.1952.2.343
    [24] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler functions, related topics and applications, Heidelberg: Springer Berlin, 2020. https://doi.org/10.1007/978-3-662-61550-8
    [25] W. Rudin, Functional analysis, 2 Eds., McGraw-Hill, 1991.
    [26] B. Simon, Schrödinger semigroups, B. Am. Math. Soc., 7 (1982), 447–527. https://doi.org/10.1090/S0273-0979-1982-15041-8 doi: 10.1090/S0273-0979-1982-15041-8
    [27] O. Saierli, Spectral mapping theorem for an evolution semigroup on a space of vector-valued almost-periodic functions, Electron. J. Differ. Eq., 2012, 1–9.
    [28] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals, and derivatives, theory and applications, Gordon and Breach Science Publishers, 1992.
    [29] M. E. Taylor, Partial differential equations III, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-7049-7
    [30] F. Z. Wang, A. S. Salama, M. M. A. Khater, Optical wave solutions of perturbed time-fractional nonlinear Schrdinger equation, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.03.014 doi: 10.1016/j.joes.2022.03.014
    [31] F. Z. Wang, E. Hou, A. S. Salama, M. M. A. Khater, T. Taylor, Numerical investigation of the nonlinear fractional ostrovsky equation, Fractals, 30 (2022). https://doi.org/10.1142/S0218348X22401429 doi: 10.1142/S0218348X22401429
    [32] F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. A. Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Time fractional fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [33] F. Wang, I. Ahmad, H. Ahmad, M. D. Alsulami, K. S. Alimgeer, C. Cesarano, et al., Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud. Univ. Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(966) PDF downloads(53) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog