Research article

Sums of the higher divisor function of diagonal homogeneous forms in short intervals

  • Received: 04 June 2023 Revised: 30 June 2023 Accepted: 05 July 2023 Published: 17 July 2023
  • MSC : 11E25, 11N37, 11P55

  • Let $ d_k(n) $ denote the k-th divisor function. In this paper, we give the asymptotic formula of the sum

    $ \sum\limits_{\substack{x-y\le n_i^r \le x+y \\ i = 1,2,\ldots,l} }{d_k(n_1^r+n_2^r+\ldots+n_l^r)}, $

    where $ n_1, n_2, \ldots, n_l \in \mathbb{Z}^+ $, $ k\ge2 $, $ r\ge 3 $ and $ l > 2^{r-1} $ are integers.

    Citation: Huimin Wang, Liqun Hu. Sums of the higher divisor function of diagonal homogeneous forms in short intervals[J]. AIMS Mathematics, 2023, 8(10): 22577-22592. doi: 10.3934/math.20231150

    Related Papers:

  • Let $ d_k(n) $ denote the k-th divisor function. In this paper, we give the asymptotic formula of the sum

    $ \sum\limits_{\substack{x-y\le n_i^r \le x+y \\ i = 1,2,\ldots,l} }{d_k(n_1^r+n_2^r+\ldots+n_l^r)}, $

    where $ n_1, n_2, \ldots, n_l \in \mathbb{Z}^+ $, $ k\ge2 $, $ r\ge 3 $ and $ l > 2^{r-1} $ are integers.



    加载中


    [1] C. Calderán, M. J. de Velasco, On divisors of a quadratic form, Bol. Soc. Bras. Mat., 31 (2000), 81–91. http://doi.org/10.1007/BF01377596 doi: 10.1007/BF01377596
    [2] C. E. Chace, The divisor problem for arithmetic progressions with small moduls, Acta Arith., 61 (1992), 35–50. http://doi.org/10.4064/AA-61-1-35-50 doi: 10.4064/AA-61-1-35-50
    [3] C. E. Chace, Writing integers as sums of products, T. Am. Math. Soc., 345 (1994), 367–379. https://doi.org/10.2307/2154608 doi: 10.2307/2154608
    [4] R. T. Guo, W. G. Zhai, Some problems about the ternary quadratic form $m_1^2+m_2^2+m_3^2$, Acta Arith., 156 (2012), 101–121. https://doi.org/10.4064/AA156-2-1 doi: 10.4064/AA156-2-1
    [5] G. W. Hu, G. S. Lü, Sums of higher divisor functions, J. Number Theory, 220 (2021), 61–74. https://doi.org/10.1016/j.jnt.2020.08.009 doi: 10.1016/j.jnt.2020.08.009
    [6] L. Q. Hu, H. F. Liu, Sum of divisors of a quaternary quadratic form with almost equal variables, Ramanujan J., 40 (2016), 557–571. https://doi.org/10.1007/s11139-015-9758-9 doi: 10.1007/s11139-015-9758-9
    [7] L. Q. Hu, Y. J. Yao, Sums of divisors of the ternary quadratic with almost equal variables, J. Number Theory, 155 (2015), 248–263. https://doi.org/10.1016/j.jnt.2015.03.018 doi: 10.1016/j.jnt.2015.03.018
    [8] L. Q. Hu, L. Yang, Sums of the triple divisor function over values of a quaternary form, Acta Arith., 183 (2018), 63–85. https://doi.org/10.4064/AA170120-20-10 doi: 10.4064/AA170120-20-10
    [9] V. Kalinka, Variant of the divisor problem involving a large number of components, Lith. Math. J., 14 (1974), 442–448. https://doi.org/10.1007/BF01414921 doi: 10.1007/BF01414921
    [10] X. D. Lü, Q. W. Mu, The sum of divisors of mixed powers, Adv. Math., 45 (2016), 357–364. https://doi.org/10.11845/sxjz.2014147b doi: 10.11845/sxjz.2014147b
    [11] C. D. Pan, C. B. Pan, Goldbach conjecture, Beijing: Science Press, 1992.
    [12] Q. F. Sun, D. Y. Zhang, Sums of the triper divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246. https://doi.org/10.1016/j.jnt.2016.04.010 doi: 10.1016/j.jnt.2016.04.010
    [13] R. C. Vaughan, The Hardy-Littlewood method, 2 Eds., Cambridge: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511470929
    [14] L. L. Zhao, The sum of divisors of a quadratic form, Acta Arith., 163 (2014), 161–177. http://doi.org/10.4064/aa163-2-6 doi: 10.4064/aa163-2-6
    [15] M. Zhang, An asymptotic formula related to the sums of divisors, Acta Arith., 175 (2016), 183–200. https://doi.org/10.4064/AA8391-5-2016 doi: 10.4064/AA8391-5-2016
    [16] M. Zhang, J. J. Li, On the sum of divisors of mixed powers in short intervals, Ramanujan J., 51 (2020), 333–352. https://doi.org/10.1007/s11139-018-0064-1 doi: 10.1007/s11139-018-0064-1
    [17] G. L. Zhou, Y. C. Ding, Sums of the higher divisor function of diagonal homogeneous forms, Ramanujan J., 59 (2022), 933–945. https://doi.org/10.1007/s11139-022-00579-z doi: 10.1007/s11139-022-00579-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1029) PDF downloads(70) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog