Research article

A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent

  • Received: 13 May 2023 Revised: 01 July 2023 Accepted: 06 July 2023 Published: 12 July 2023
  • MSC : 46E30, 47B38

  • The fractional Hardy-type operators of variable order is shown to be bounded from the grand Herz spaces $ {\dot{K} ^{a(\cdot), u), \theta}_{ p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {\dot{K} ^{a(\cdot), u), \theta}_{\rho, q(\cdot)}(\mathbb{R}^n)} $, where $ \rho = (1+|z_1|)^{-\lambda} $ and

    $ {1 \over q(z)} = {1 \over p(z)}-{\zeta (z) \over n} $

    when $ p(z) $ is not necessarily constant at infinity.

    Citation: Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad. A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent[J]. AIMS Mathematics, 2023, 8(9): 22178-22191. doi: 10.3934/math.20231130

    Related Papers:

  • The fractional Hardy-type operators of variable order is shown to be bounded from the grand Herz spaces $ {\dot{K} ^{a(\cdot), u), \theta}_{ p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {\dot{K} ^{a(\cdot), u), \theta}_{\rho, q(\cdot)}(\mathbb{R}^n)} $, where $ \rho = (1+|z_1|)^{-\lambda} $ and

    $ {1 \over q(z)} = {1 \over p(z)}-{\zeta (z) \over n} $

    when $ p(z) $ is not necessarily constant at infinity.



    加载中


    [1] M. Růžička, Electroreological fluids: modeling and mathematical theory, Springer, 2000. https://doi.org/10.1007/BFb0104029
    [2] L. Diening, M. Růžička, Calderon-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197–220. https://doi.org/10.1515/crll.2003.081 doi: 10.1515/crll.2003.081
    [3] O. A. Omer, K. Saibi, M. Z. Abidin, M. Osman, Parametric Marcinkiewicz integral and its higher-order commutators on variable exponents Morrey-Herz spaces, J. Funct. Spaces, 2022 (2022), 7209977. https://doi.org/10.1155/2022/7209977 doi: 10.1155/2022/7209977
    [4] M. A. Ragusa, Regularity of solutions of divergence form elliptic equations, Proc. Amer. Math. Soc., 128 (2000), 533–540. https://doi.org/10.1090/s0002-9939-99-05165-5 doi: 10.1090/s0002-9939-99-05165-5
    [5] A. Scapellato, Homogeneous Herz spaces with variable exponents and regularity results, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), 82. https://doi.org/10.14232/ejqtde.2018.1.82 doi: 10.14232/ejqtde.2018.1.82
    [6] A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 781–795. https://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043
    [7] A. Hussain, M. Asim, F. Jarad, Variable lambda-central morrey space estimates for the fractional Hardy operators and commutators, J. Math., 2022 (2022), 5855068. https://doi.org/10.1155/2022/5855068 doi: 10.1155/2022/5855068
    [8] M. Asim, A. Hussain, N. Sarfraz, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 2. https://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
    [9] A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Spaces, 2021 (2021), 9705250. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
    [10] J. L. Wu, W. J. Zhao, Boundedness for fractional Hardy-type operator on variable-exponent Herz-Morrey spaces, Kyoto J. Math., 56 (2016), 831–845. https://doi.org/10.1215/21562261-3664932 doi: 10.1215/21562261-3664932
    [11] V. Kokilashvili, S. Samko, On Sobolev theorem for Riesz-type potentials in the Lebesgue spaces with variable exponent, Z. Anal. Anwend., 22 (2003), 899–910. https://doi.org/10.4171/ZAA/1178 doi: 10.4171/ZAA/1178
    [12] H. Nafis, H. Rafeiro, M. A. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020 (2020), 1. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
    [13] M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653 doi: 10.3934/math.2023653
    [14] B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 583. https://doi.org/10.3390/axioms11110583 doi: 10.3390/axioms11110583
    [15] B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
    [16] B. Sultan, F. M. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz-Morrey spaces with variable exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
    [17] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Springer, 2013.
    [18] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, volume 1: variable exponent Lebesgue and amalgam spaces, Springer, 2016. https://doi.org/10.1007/978-3-319-21015-5
    [19] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, volume 2: variable exponent Hölder, Morrey Campanato and grand spaces, Springer, 2016. https://doi.org/10.1007/978-3-319-21018-6
    [20] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslov. Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [21] S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1301) PDF downloads(92) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog