Research article Special Issues

Mixed radial-angular bounds for Hardy-type operators on Heisenberg group

  • Received: 28 April 2023 Revised: 19 June 2023 Accepted: 20 June 2023 Published: 30 June 2023
  • MSC : Primary 42B25; Secondary 42B20, 47H60, 47B47

  • In this paper, we study $ n $-dimensional Hardy operator and its dual in mixed radial-angular spaces on Heisenberg group and obtain their sharp bounds by using the rotation method. Furthermore, the sharp bounds of $ n $-dimensional weighted Hardy operator and weighted Cesàro operator are also obtained.

    Citation: Zhongci Hang, Dunyan Yan, Xiang Li. Mixed radial-angular bounds for Hardy-type operators on Heisenberg group[J]. AIMS Mathematics, 2023, 8(9): 21022-21032. doi: 10.3934/math.20231070

    Related Papers:

  • In this paper, we study $ n $-dimensional Hardy operator and its dual in mixed radial-angular spaces on Heisenberg group and obtain their sharp bounds by using the rotation method. Furthermore, the sharp bounds of $ n $-dimensional weighted Hardy operator and weighted Cesàro operator are also obtained.



    加载中


    [1] P. Chen, X. T. Duong, J. Li, Q. Wu, Compactness of Riesz trans form commutator on stratified Lie groups, J. Funct. Anal., 277 (2019), 1639–1676. https://doi.org/10.1016/j.jfa.2019.05.008 doi: 10.1016/j.jfa.2019.05.008
    [2] M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, P. Am. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6 doi: 10.1090/S0002-9939-1995-1239796-6
    [3] J. Chu, Z. Fu, Q. Wu, $L^p$ and BMO bounds for weighted Hardy operators on the Heisenberg group, J. Inequal. Appl., 2016 (2016), 282. https://doi.org/10.1186/s13660-016-1222-x doi: 10.1186/s13660-016-1222-x
    [4] T. Coulhon, D. Muller, J. Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann., 305 (1996), 369–379. https://doi.org/10.1007/BF01444227 doi: 10.1007/BF01444227
    [5] J. Duoandikoetxea, O. Oruetxebarria, Weighted mixed-norm inequalities through extrapolation, Math. Nachr., 292 (2019), 1482–1489. https://doi.org/10.1002/mana.201800311 doi: 10.1002/mana.201800311
    [6] W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. https://doi.org/10.1215/S0012-7094-76-04332-5 doi: 10.1215/S0012-7094-76-04332-5
    [7] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Princeton University Press, 1982.
    [8] Z. Fu, X. Hou, M. Lee, J. Li, A study of one-sided singular integral and function space via reproducing formula, J. Geom. Anal., 2023, In press.
    [9] Z. Fu, S. Gong, S. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2852. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064
    [10] M. González, F. León-Saavedra, Cyclic behavior of the Ces$\grave{a}$ro operator on $L^2(0, \infty)$, P. Am. Math. Soc., 137 (2009), 2049–2055. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064
    [11] J. Guo, L. Sun, F. Zhao, Hausdorff operators on the Heisenberg group. Acta Math. Sin., 31 (2015), 1703–1714. https://doi.org/10.1007/s10114-015-5109-4
    [12] A. Koräanyi, H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math., 80 (1985), 309–338. https://doi.org/10.1007/BF01388609 doi: 10.1007/BF01388609
    [13] F. León-Saavedra, A. Piqueras-Lerena, J. B. Seoane-Sepúlveda, Orbits of Ces$\grave{a}$ro type operators, Math. Nachr., 282 (2009), 764–773. https://doi.org/10.1002/mana.200610769 doi: 10.1002/mana.200610769
    [14] A. R. Mirotin, Boundedness of Hausdorff operators on real Hardy spaces $H^1$ over locally compact groups, J. Math. Anal. Appl., 473 (2019), 519–533. https://doi.org/10.1016/j.jmaa.2018.12.065 doi: 10.1016/j.jmaa.2018.12.065
    [15] S. Shi, Z. Fu, S. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 307 (2020), 239–256. https://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239
    [16] S. Thangavelu, Harmonic analysis on the Heisenberg group, Progress in Mathematics, Boston, MA: Birkhauser Boston, 159 (1998).
    [17] M. Wei, D. Yan, Sharp bounds for Hardy-type operators on mixed radial-angular spaces, arXiv: 2207.14570, 2022.
    [18] Q. Wu, Z. Fu, Sharp estimates for Hardy operators on Heisenberg group, Front. Math. China, 11 (2016), 155–172. https://doi.org/10.1007/s11464-015-0508-5 doi: 10.1007/s11464-015-0508-5
    [19] F. Zhao, Z. Fu, S. Lu, Endpoint estimates for $n$-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1977–1990. https://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1301) PDF downloads(131) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog