Research article

A study of the equivalence of inference results in the contexts of true and misspecified multivariate general linear models

  • Received: 03 May 2023 Revised: 11 June 2023 Accepted: 15 June 2023 Published: 30 June 2023
  • MSC : 62F12, 62F30, 62J10

  • In practical applications of regression models, we may meet with the situation where a true model is misspecified in some other forms due to certain unforeseeable reasons, so that estimation and statistical inference results obtained under the true and misspecified regression models are not necessarily the same, and therefore, it is necessary to compare these results and to establish certain links between them for the purpose of reasonably explaining and utilizing the misspecified regression models. In this paper, we propose and investigate some comparison and equivalence analysis problems on estimations and predictions under true and misspecified multivariate general linear models. We first give the derivations and presentations of the best linear unbiased predictors (BLUPs) and the best linear unbiased estimators (BLUEs) of unknown parametric matrices under a true multivariate general linear model and its misspecified form. We then derive a variety of necessary and sufficient conditions for the BLUPs/BLUEs under the two competing models to be equal using a series of highly-selective formulas and facts associated with ranks, ranges and generalized inverses of matrices, as well as block matrix operations.

    Citation: Ruixia Yuan, Bo Jiang, Yongge Tian. A study of the equivalence of inference results in the contexts of true and misspecified multivariate general linear models[J]. AIMS Mathematics, 2023, 8(9): 21001-21021. doi: 10.3934/math.20231069

    Related Papers:

  • In practical applications of regression models, we may meet with the situation where a true model is misspecified in some other forms due to certain unforeseeable reasons, so that estimation and statistical inference results obtained under the true and misspecified regression models are not necessarily the same, and therefore, it is necessary to compare these results and to establish certain links between them for the purpose of reasonably explaining and utilizing the misspecified regression models. In this paper, we propose and investigate some comparison and equivalence analysis problems on estimations and predictions under true and misspecified multivariate general linear models. We first give the derivations and presentations of the best linear unbiased predictors (BLUPs) and the best linear unbiased estimators (BLUEs) of unknown parametric matrices under a true multivariate general linear model and its misspecified form. We then derive a variety of necessary and sufficient conditions for the BLUPs/BLUEs under the two competing models to be equal using a series of highly-selective formulas and facts associated with ranks, ranges and generalized inverses of matrices, as well as block matrix operations.



    加载中


    [1] J. Baksalary, R. Kala, Criteria for estimability in multivariate linear models, Math. Operationsforsch. u. Statist., 7 (1976), 5–9. http://dx.doi.org/10.1080/02331887608801273 doi: 10.1080/02331887608801273
    [2] J. Baksalary, T. Mathew, Linear sufficiency and completeness in an incorrectly specified general Gauss-Markov model, Sankhyā: The Indian Journal of Statistics, 48 (1986), 169–180.
    [3] J. Baksalary, T. Mathew, Admissible linear estimation in a general Gauss-Markov model with an incorrectly specified dispersion matrix, J. Multivariate Anal., 27 (1988), 53–67. http://dx.doi.org/10.1016/0047-259X(88)90115-7 doi: 10.1016/0047-259X(88)90115-7
    [4] P. Bhimasankaram, S. Rao Jammalamadaka, Updates of statistics in a general linear model: a statistical interpretation and applications, Commun. Stat.-Simul. Comput., 23 (1994), 789–801. http://dx.doi.org/10.1080/03610919408813199 doi: 10.1080/03610919408813199
    [5] S. Gan, Y. Sun, Y. Tian, Equivalence of predictors under real and over-parameterized linear models, Commun. Stat.-Theor. Meth., 46 (2017), 5368–5383. http://dx.doi.org/10.1080/03610926.2015.1100742 doi: 10.1080/03610926.2015.1100742
    [6] A. Goldberger, Best linear unbiased prediction in the generalized linear regression models, J. Am. Stat. Assoc., 57 (1962), 369–375. http://dx.doi.org/10.2307/2281645 doi: 10.2307/2281645
    [7] B. Jiang, Y. Tian, On equivalence of predictors/estimators under a multivariate general linear model with augmentation, J. Korean Stat. Soc., 46 (2017), 551–561. http://dx.doi.org/10.1016/j.jkss.2017.04.001 doi: 10.1016/j.jkss.2017.04.001
    [8] W. Li, Y. Tian, R. Yuan, Statistical analysis of a linear regression model with restrictions and superfluous variables, J. Ind. Manag. Optim., 19 (2023), 3107–3127. http://dx.doi.org/10.3934/jimo.2022079 doi: 10.3934/jimo.2022079
    [9] C. Lu, S. Gan, Y. Tian, Some remarks on general linear model with new regressors, Stat. Probil. Lett., 97 (2015), 16–24. http://dx.doi.org/10.1016/j.spl.2014.10.015 doi: 10.1016/j.spl.2014.10.015
    [10] C. Lu, Y. Sun, Y. Tian, Two competing linear random-effects models and their connections, Stat. Papers, 59 (2018), 1101–1115. http://dx.doi.org/10.1007/s00362-016-0806-3 doi: 10.1007/s00362-016-0806-3
    [11] A. Markiewicz, S. Puntanen, All about the $\perp$ with its applications in the linear statistical models, Open Math., 13 (2015), 33–50. http://dx.doi.org/10.1515/math-2015-0005 doi: 10.1515/math-2015-0005
    [12] A. Markiewicz, S. Puntanen, G. Styan, The legend of the equality of OLSE and BLUE: highlighted by C. R. Rao in 1967, In: Methodology and applications of statistics, Cham: Springer, 2021, 51–76. http://dx.doi.org/10.1007/978-3-030-83670-2_3
    [13] G. Marsaglia, G. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear A., 2 (1974), 269–292. http://dx.doi.org/10.1080/03081087408817070 doi: 10.1080/03081087408817070
    [14] T. Mathew, Linear estimation with an incorrect dispersion matrix in linear models with a common linear part, J. Am. Stat. Assoc., 78 (1983), 468–471. http://dx.doi.org/10.2307/2288660 doi: 10.2307/2288660
    [15] T. Mathew, On inference in a general linear model with an incorrect dispersion matrix, In: Linear statistical inference, New York: Springer, 1985,200–210. http://dx.doi.org/10.1007/978-1-4615-7353-1_161985
    [16] T. Mathew, P. Bhimasankaram, Optimality of BLUE's in a general linear model with incorrect design matrix, J. Stat. Plan. Infer., 8 (1983), 315–329. http://dx.doi.org/10.1016/0378-3758(83)90048-4 doi: 10.1016/0378-3758(83)90048-4
    [17] S. Mitra, B. Moore, Gauss-Markov estimation with an incorrect dispersion matrix, Sankhyā: The Indian Journal of Statistics, 35 (1973), 139–152.
    [18] D. Nel, Tests for equality of parameter matrices in two multivariate linear models, J. Multivariate Anal., 61 (1997), 29–37. http://dx.doi.org/10.1006/jmva.1997.1661 doi: 10.1006/jmva.1997.1661
    [19] W. Oktaba, The general multivariate Gauss-Markov model of the incomplete block design, Aust. NZ J. Stat., 45 (2003), 195–205. http://dx.doi.org/10.1111/1467-842X.00275 doi: 10.1111/1467-842X.00275
    [20] R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge, 51 (1955), 406–413. http://dx.doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401
    [21] S. Puntanen, G. Styan, J. Isotalo, Matrix tricks for linear statistical models, Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-10473-2
    [22] C. Rao, S. Mitra, Generalized inverse of a matrices and its applications, New York: Wiley, 1971.
    [23] J. Rong, X. Liu, On misspecification of the covariance matrix in linear models, Far East Journal of Theoretical Statistics, 25 (2008), 209–219.
    [24] Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, SEA Bull. Math., 25 (2002), 745–755. http://dx.doi.org/10.1007/s100120200015 doi: 10.1007/s100120200015
    [25] Y. Tian, Some decompositions of OLSEs and BLUEs under a partitioned linear model, Int. Stat. Rev., 75 (2007), 224–248. http://dx.doi.org/10.1111/j.1751-5823.2007.00018.x doi: 10.1111/j.1751-5823.2007.00018.x
    [26] Y. Tian, On equalities for BLUEs under mis-specified Gauss-Markov models, Acta. Math. Sin.-English Ser., 25 (2009), 1907–1920. http://dx.doi.org/10.1007/s10114-009-6375-9 doi: 10.1007/s10114-009-6375-9
    [27] Y. Tian, A new derivation of BLUPs under random-effects model, Metrika, 78 (2015), 905–918. http://dx.doi.org/10.1007/s00184-015-0533-0 doi: 10.1007/s00184-015-0533-0
    [28] Y. Tian, Matrix rank and inertia formulas in the analysis of general linear models, Open Math., 15 (2017), 126–150. http://dx.doi.org/10.1515/math-2017-0013 doi: 10.1515/math-2017-0013
    [29] Y. Tian, S. Cheng, The maximal and minimal ranks of $A - BXC$ with applications, New York J. Math., 9 (2003), 345–362.
    [30] Y. Tian, B. Jiang, A new analysis of the relationships between a general linear model and its mis-specified forms, J. Korean Stat. Soc., 46 (2017), 182–193. http://dx.doi.org/10.1016/j.jkss.2016.08.004 doi: 10.1016/j.jkss.2016.08.004
    [31] Y. Tian, C. Wang, On simultaneous prediction in a multivariate general linear model with future observations, Stat. Probil. Lett., 128 (2017), 52–59. http://dx.doi.org/10.1016/j.spl.2017.04.007 doi: 10.1016/j.spl.2017.04.007
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(962) PDF downloads(60) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog