Research article

Certain new iteration of hybrid operators with contractive $ M $ -dynamic relations

  • Received: 26 March 2023 Revised: 07 June 2023 Accepted: 12 June 2023 Published: 26 June 2023
  • MSC : 46T99, 47H10, 54H25

  • This article investigates Wardowski's contraction in the setting of extended distance spaces known as $ M $-metric spaces using hybrid operators based an $ M $ -dynamic iterative process. The main purpose is to observe new set-valued Chatterjea type common fixed point theorems for hybrid operators with respect to an $ M $-dynamic iterative process, i.e., $ \check{D}(\Psi _{1}, \Psi _{2}, s_{0}) $. We realize an application: the existence of a solution for a multistage system and integral equation. Also, we give a graphical interpretation of our obtained theorems. The main results are explicated with the help of a relevant example. Some important corollaries are extracted from the main theorems as well.

    Citation: Amjad Ali, Muhammad Arshad, Eskandar Ameer, Asim Asiri. Certain new iteration of hybrid operators with contractive $ M $ -dynamic relations[J]. AIMS Mathematics, 2023, 8(9): 20576-20596. doi: 10.3934/math.20231049

    Related Papers:

  • This article investigates Wardowski's contraction in the setting of extended distance spaces known as $ M $-metric spaces using hybrid operators based an $ M $ -dynamic iterative process. The main purpose is to observe new set-valued Chatterjea type common fixed point theorems for hybrid operators with respect to an $ M $-dynamic iterative process, i.e., $ \check{D}(\Psi _{1}, \Psi _{2}, s_{0}) $. We realize an application: the existence of a solution for a multistage system and integral equation. Also, we give a graphical interpretation of our obtained theorems. The main results are explicated with the help of a relevant example. Some important corollaries are extracted from the main theorems as well.



    加载中


    [1] A. Ali, M. Arshad, A. Hussain, N. Hussain, S. M. Alsulami, On new generalized $\theta _{b}$-contractions and related fixed point theorems, J. Inequal. Appl., 2022 (2022), 37. https://doi.org/10.1186/s13660-022-02770-8 doi: 10.1186/s13660-022-02770-8
    [2] A. Ali, H. Işık, H. Aydi, E. Ameer, J. R. Lee, M. Arshad, On multivalued Suzuki-type $\theta $-contractions and related applications, Open Math., 18 (2020), 386–399. https://doi.org/10.1515/math-2020-0139 doi: 10.1515/math-2020-0139
    [3] A. Ali, M. Arshad, A. Asif, E. Savas, C. Park, D. Y. Shin, On multivalued maps for $\varphi$-contractions involving orbits with application, AIMS Math., 6 (2021), 7532–7554. https://doi.org/10.3934/math.2021440 doi: 10.3934/math.2021440
    [4] A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Phys. A, 538 (2020), 122669. https://doi.org/10.1016/j.physa.2019.122669 doi: 10.1016/j.physa.2019.122669
    [5] A. Ali, A. Hussain, M. Arshad, H. A. Sulami, M. Tariq, Certain new development to the orthogonal binaryc relations, Symmetry, 14 (2022), 1954. https://doi.org/10.3390/sym14101954 doi: 10.3390/sym14101954
    [6] A. Ali, E. Ameer, S. S. Aiadi, M. Tariq, M. Arshad, N. Mlaiki, et al., New extension to fuzzy dynamic system and fuzzy fixed point results with an application, AIMS Math., 8 (2022), 1208–1229. https://doi.org/10.3934/math.2023061 doi: 10.3934/math.2023061
    [7] M. Arshad, M. Abbas, A. Hussain, N. Hussain, Generalized dynamic process for generalized $(f, L)$-almost $F$-contraction with applications, J. Nonlinear Sci. Appl., 9 (2016), 1702–1715. https://doi.org/10.22436/jnsa.009.04.26 doi: 10.22436/jnsa.009.04.26
    [8] M. Asadi, E. Karapinar, P. Salimi, New extension of $p$ -metric spaces with fixed-point results on $M$-metric spaces, J. Inequal. Appl., 2014 (2014), 18. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18
    [9] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. https://doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012
    [10] S. C. Buranay, M. A. Özarslan, S. S. Falahhesar, Hybrid operators for approximating nonsmooth functions and applications on Volterra integral equations with weakly singular kernels, Numer. Funct. Anal. Optim., 44 (2023), 36–63. https://doi.org/10.1080/01630563.2022.2150642 doi: 10.1080/01630563.2022.2150642
    [11] C. Ciobanescu, Remarks on some operators of nonexpansive type, J. Math. Anal., 13 (2022), 42–52. https://doi.org/10.54379/jma-2022-4-4 doi: 10.54379/jma-2022-4-4
    [12] H. A. Hammad, H. Aydi, M. De la Sen, Generalized dynamic process for an extended multi-valued $F$-contraction in metric-like spaces with applications, Alexandria Eng. J., 59 (2020), 3817–3825. https://doi.org/10.1016/j.aej.2020.06.037 doi: 10.1016/j.aej.2020.06.037
    [13] H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
    [14] H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
    [15] D. Klim, D. Wardowski, Fixed points of dynamic processes of set-valued $F$-contractions and application to functional equations, Fixed Point Theory Appl., 2015 (2015), 22. https://doi.org/10.1186/s13663-015-0272-y doi: 10.1186/s13663-015-0272-y
    [16] S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
    [17] M. Tariq, M. Arshad, E. Ameer, A. Aloqaily, S. S. Aiadi, N. Mlaik, On relational weak $\left(F_{R}^{m}, \eta \right)$-contractive mappings and their applications, Symmetry, 15 (2023), 922. https://doi.org/10.3390/sym15040922 doi: 10.3390/sym15040922
    [18] M. Tariq, M. Abbas, A. Hussain, M. Arshad, A. Ali, H. Sulami, Fixed points of non-linear set-valued $(\alpha _{\ast }\phi _{M})$ -contraction mappings and related applications, AIMS Math., 8 (2022), 8861–8878. https://doi.org/10.3934/math.2022494 doi: 10.3934/math.2022494
    [19] M. Tariq, E. Ameer, A. Ali, H. A. Hammad, F. Jarad, Applying fixed point techniques for obtaining a positive definite solution to nonlinear matrix equations, AIMS Math., 8 (2023), 3842–3859. https://doi.org/10.3934/math.2023191 doi: 10.3934/math.2023191
    [20] S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/PJM.1969.30.475 doi: 10.2140/PJM.1969.30.475
    [21] P. R. Patle, D. K. Patel, H. Aydi, D. Gopal, N. Mlaiki, Nadler and Kannan type set valued mappings in $M$-metric spaces and an application, Mathematics, 7 (2019), 373. https://doi.org/10.3390/math7040373 doi: 10.3390/math7040373
    [22] M. S. Shagari, M. Noorwali, A. Azam, Hybrid fixed point theorems of fuzzy soft set-valued maps with applications in integral inclusions and decision making, Mathematics, 11 (2023), 1393. https://doi.org/10.3390/math11061393 doi: 10.3390/math11061393
    [23] H. M. Srivastava, A. Ali, A. Hussain, M. Arshad, H. A. Sulami, A certain class of $\theta _{L}$-type non-linear operatorsand some related fixed point results, J. Nonlinear Var. Anal., 6 (2022), 69–87. https://doi.org/10.23952/jnva.6.2022.1.05 doi: 10.23952/jnva.6.2022.1.05
    [24] M. Sgroi, C. Vetro, Multi-valued $F$-contractions and the solutions of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. https://doi.org/10.2298/FIL1307259S doi: 10.2298/FIL1307259S
    [25] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31 (2015), 403–410. https://doi.org/10.37193/CJM.2015.03.18 doi: 10.37193/CJM.2015.03.18
    [26] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(945) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog