Research article Special Issues

Some well known inequalities for $ (h_1, h_2) $-convex stochastic process via interval set inclusion relation

  • Received: 15 February 2023 Revised: 31 May 2023 Accepted: 06 June 2023 Published: 14 June 2023
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • This note introduces the concept of $ (h_1, h_2) $-convex stochastic processes using interval-valued functions. First we develop Hermite-Hadmard $ (\mathbb{H.H}) $ type inequalities, then we check the results for the product of two convex stochastic process mappings, and finally we develop Ostrowski and Jensen type inequalities for $ (h_1, h_2) $-convex stochastic process. Also, we have shown that this is a more generalized and larger class of convex stochastic processes with some remark. Furthermore, we validate our main findings by providing some non-trivial examples.

    Citation: Waqar Afzal, Mujahid Abbas, Sayed M. Eldin, Zareen A. Khan. Some well known inequalities for $ (h_1, h_2) $-convex stochastic process via interval set inclusion relation[J]. AIMS Mathematics, 2023, 8(9): 19913-19932. doi: 10.3934/math.20231015

    Related Papers:

  • This note introduces the concept of $ (h_1, h_2) $-convex stochastic processes using interval-valued functions. First we develop Hermite-Hadmard $ (\mathbb{H.H}) $ type inequalities, then we check the results for the product of two convex stochastic process mappings, and finally we develop Ostrowski and Jensen type inequalities for $ (h_1, h_2) $-convex stochastic process. Also, we have shown that this is a more generalized and larger class of convex stochastic processes with some remark. Furthermore, we validate our main findings by providing some non-trivial examples.



    加载中


    [1] R. E. Moore, Interval analysis, Englewood Cliffs, Prentice-Hall, 1966.
    [2] N. A. Gasilov, Ş. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 22 (2018), 3817–3828.
    [3] D. Singh, B. A. Dar, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. https://doi.org/10.3934/jimo.2018063 doi: 10.3934/jimo.2018063
    [4] E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE T. Neural Networ., 20 (2009), 638–653. http://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267
    [5] K. Nikodem, On convex stochastic processes, Aequationes Math., 2 (1998), 427–446. https://dx.doi.org/10.1007/BF02190513 doi: 10.1007/BF02190513
    [6] A. Skowronski, On some properties of $j$-convex stochastic processes, Aequationes Math., 2 (1992), 249–258. https://dx.doi.org/10.1007/BF01830983 doi: 10.1007/BF01830983
    [7] D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. https://dx.doi.org/10.1007/s00010-011-0090-1 doi: 10.1007/s00010-011-0090-1
    [8] N. Okur, I. Işcan, E. Y. Dizdar, Hermite-Hadamard type inequalities for p-convex stochastic processes, Int. J. Optim. Control Theor. Appl., 9 (2019), 148–153. https://doi.org/10.11121/ijocta.01.2019.00602 doi: 10.11121/ijocta.01.2019.00602
    [9] E. Set, M. Tomar, S. Maden, Hermite-Hadamard type inequalities for s-convex stochastic processes in the second sense, Turk. J. Anal. Number Theor., 2 (2014), 202–207. https://dx.doi.org/10.12691/tjant-2-6-3 doi: 10.12691/tjant-2-6-3
    [10] H. Budak, M. Z. Sarikaya, A new Hermite-Hadamard inequality for $h$-convex stochastic processes, RGMIA Res. Rep. Collect., 19 (2016), 30. http://dx.doi.org/10.20852/ntmsci.2019.376 doi: 10.20852/ntmsci.2019.376
    [11] D. Barraez, L. Gonzalez, N. Merentes, On $h$-convex stochastic processes, Math. Aeterna, 5 (2015), 571–581.
    [12] J. El-Achky, S. Taoufiki, On $(p-h)$-convex stochastic processes, J. Interdiscip. Math., 2 (2022), 1–12. https://doi.org/10.1080/09720502.2021.1938994 doi: 10.1080/09720502.2021.1938994
    [13] M. Vivas-Cortez, M. S. Saleem, S. Sajid, Fractional version of Hermite-Hadamard-Mercer inequalities for convex stochastic processes via $\Psi_k$-Riemann-Liouville fractional integrals and its applications, Appl. Math., 16 (2022), 695–709. http://dx.doi.org/10.18576/amis/22nuevoformat20(1)2 doi: 10.18576/amis/22nuevoformat20(1)2
    [14] W. Afzal, E. Y. Prosviryakov, S. M. El-Deeb, Y. Almalki, Some new estimates of HermiteHadamard, Ostrowski and Jensen-type inclusions for $h$-convex stochastic process via interval-valued functions, Symmetry, 15 (2023), 831. https://doi.org/10.3390/sym15040831 doi: 10.3390/sym15040831
    [15] J. El-Achky, D. Gretete, M. Barmaki, Inequalities of Hermite-Hadamard type for stochastic process whose fourth derivatives absolute are quasi-convex, $P$-convex, $s$-convex and $h$-convex, J. Interdiscip. Math., 3 (2021), 1–17. https://doi.org/10.1080/09720502.2021.1887607 doi: 10.1080/09720502.2021.1887607
    [16] N. Sharma, R. Mishra, A. Hamdi, Hermite-Hadamard type integral inequalities for multidimensional general $h$-harmonic preinvex stochastic processes, Commun. Stat.-Theor. M., 4 (2020), 1–41. https://doi.org/10.1080/03610926.2020.1865403 doi: 10.1080/03610926.2020.1865403
    [17] H. Budak, M. Z. Sarikaya, On generalized stochastic fractional integrals and related inequalities, Theor. Appl., 5 (2018), 471–481. https://doi.org/10.15559/18-VMSTA117 doi: 10.15559/18-VMSTA117
    [18] W. Afzal, S. M. Eldin, W. Nazeer, A. M. Galal, Some integral inequalities for harmonical $cr$-$h$-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 13473–13491. https://doi.org/10.3934/math.2023683 doi: 10.3934/math.2023683
    [19] H. Kara, M. A. Ali, H. Budak, Hermite-Hadamard-Mercer type inclusions for interval-valued functions via Riemann-Liouville fractional integrals, Turk. J. Math., 6 (2022), 2193–2207. https://doi.org/10.55730/1300-0098.3263 doi: 10.55730/1300-0098.3263
    [20] N. Sharma, R. Mishra, A. Hamdi, Hermite-Hadamard type integral inequalities for multidimensional general $h$-harmonic preinvex stochastic processes, Commun. Stat.-Theor. M., 4 (2020), 1–41. https://doi.org/10.1080/03610926.2020.1865403 doi: 10.1080/03610926.2020.1865403
    [21] M. Abbas, W. Afzal, T. Botmart, A. M. Galal, Jensen, Ostrowski and Hermite-Hadamard type inequalities for -convex stochastic processes by means of center-radius order relation, AIMS Math., 8 (2023), 16013–16030.. http://dx.doi.org/2010.3934/math.2023817
    [22] M. Tunc, Ostrowski-type inequalities via $h$-convex functions with applications to special means, J. Inequal. Appl., 1 (2013), 1–10. https://doi.org/10.1186/1029-242X-2013-326 doi: 10.1186/1029-242X-2013-326
    [23] L. Gonzales, J. Materano, M. V. Lopez, Ostrowski-type inequalities via $h$-convex stochastic processes, JP J. Math. Sci., 6 (2013), 15–29.
    [24] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 1 (2018), 1–14. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [25] W. Afzal, T. Botmart, Some novel estimates of Jensen and Hermite-Hadamard inequalities for $h$-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 7277–7291. https://doi.org/10.3934/math.2023366 doi: 10.3934/math.2023366
    [26] J. E. H. Hernandez, On $(m, h_1, h_2)$-G-convex dominated stochastic processes, Kragujev. J. Math., 46 (2022), 215–227. https://doi.org/10.3934/math.2023366 doi: 10.3934/math.2023366
    [27] M. J. Vivas-Cortez, On $(m, h_1, h_2)$-convex stochastic processes using fractional integral operator, Appl. Math. Inform. Sci., 12 (2018), 45–53. http://dx.doi.org/10.18576/amis/120104 doi: 10.18576/amis/120104
    [28] H. Fu, M. S. Saleem, W. Nazeer, M. Ghafoor, P. Li, On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes, AIMS Math., 6 (2021), 6322–6339. http://dx.doi.org/10.3934/math.2021371 doi: 10.3934/math.2021371
    [29] H. Agahi, A. Babakhani, On fractional stochastic inequalities related to Hermite-Hadamard and Jensen types for convex stochastic processes, Aequationes Math., 90 (2016), 1035–1043. http://dx.doi.org/10.3934/math.2021371 doi: 10.3934/math.2021371
    [30] D. Kotrys, Remarks on Jensen, Hermite-Hadamard and Fejer inequalities for strongly convex stochastic processes, Math. Aeterna, 5 (2015), 104.
    [31] W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2023), 1696–1712. https://doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087
    [32] L. Li, Z. Hao, On Hermite-Hadamard inequality for $h$-convex stochastic processes, Aequationes Math., 91 (2017), 909–920. http://dx.doi.org/10.1007/s00010-017-0488-5 doi: 10.1007/s00010-017-0488-5
    [33] E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-020-02977-3 doi: 10.1186/s13662-020-02977-3
    [34] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 1 (2020), 1–12. https://doi.org/10.1186/s13660-020-02393-x doi: 10.1186/s13660-020-02393-x
    [35] M. A. Ali, H. Budak, G. Murtaza, Y. M. Chu, Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions, J. Inequal. Appl., 1 (2021), 84. https://doi.org/10.1186/s13660-021-02619-6 doi: 10.1186/s13660-021-02619-6
    [36] A. Iqbal, M. A. Khan, M. Suleman, Y. M. Chu, The right Riemann-Liouville fractional Hermite-Hadamard type inequalities derived from Green's function, AIP Adv., 10 (2020), 045032. https://doi.org/10.1063/1.5143908 doi: 10.1063/1.5143908
    [37] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard-type inequalities for-convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 149. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8
    [38] T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 330. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y
    [39] G. Sana, M. B. Khan, M. A. Noor, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001
    [40] Y. Khurshid, M. A. Khan, Y. M. Chu, Ostrowski type inequalities involving conformable integrals via preinvex functions, AIP Adv., 10 (2020), 055204. https://doi.org/10.1063/5.0008964 doi: 10.1063/5.0008964
    [41] T. Saeed, W. Afzal, K. Shabbir, S. Treanţă, M. D. Sen, Some novel estimates of Hermite-Hadamard and Jensen type inequalities for $(h_1, h_2)$-convex functions pertaining to total order relation, Mathematics, 10 (2022), 4777. https://doi.org/10.3390/math10244777 doi: 10.3390/math10244777
    [42] T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. D. Sen, Some new generalizations of integral inequalities for harmonical $cr$-$(h_1, h_2)$-Godunova Levin functions and applications, Mathematics, 10 (2022), 4540. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540
    [43] V. Stojiljkovic, Hermite Hadamard type inequalities involving $(kp)$ fractional operator with ($\alpha$, h- m)- p convexity, Eur. J. Pure. Appl. Math., 16 (2023), 503–522. https://doi.org/10.29020/nybg.ejpam.v16i1.4689 doi: 10.29020/nybg.ejpam.v16i1.4689
    [44] G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, V. Stojiljkovic, Z. M. Fadail, S. Radenovic, Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space, AIMS Math., 8 (2023), 3269–3285. http://dx.doi.org/2010.3934/math.2023168
    [45] K. Ahmad, M. A. Khan, S. Khan, A. Ali, Y. M. Chu, New estimation of Zipf-Mandelbrot and Shannon entropies via refinements of Jensen's inequality, AIP Adv., 11 (2021), 015147. https://doi.org/10.1063/5.0039672 doi: 10.1063/5.0039672
    [46] M. A. Khan, J. Pecaric, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4391–4945. https://doi.org/10.3934/math.2020315 doi: 10.3934/math.2020315
    [47] X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324
    [48] W. Afzal, K. Shabbir, S. Treanţă, K. Nonlaopon, Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions, AIMS Math., 8 (2022), 3303–3321. https://doi.org/10.3934/math.2023170 doi: 10.3934/math.2023170
    [49] W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $(h_1, h_2)$-Godunova-Levin functions, AIMS Math., 7 (2022), 19372–19387. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064
    [50] W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some H-Godunova-Levin unction inequalities using center radius (Cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
    [51] W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical $(h_1, h_2)$-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
    [52] W. Afzal, K. Shabbir, T. Botmart, S. Treanţă, Some new estimates of well known inequalities for $(h_1, h_2)$-Godunova-Levin functions by means of center-radius order relation, AIMS Math., 8 (2022), 3101–3119. https://doi.org/10.3934/math.2023160 doi: 10.3934/math.2023160
    [53] F. Li, J. Liu, Y. Yan, J. Rong, J. Yi, A time-variant reliability analysis method based on the stochastic process discretization under random and interval variables, Symmetry, 13 (2021), 568. https://doi.org/10.3390/sym13040568 doi: 10.3390/sym13040568
    [54] C. Wang, W. Gao, C. Song, N. Zhang, Stochastic interval analysis of natural frequency and mode shape of structures with uncertainties, J. Sound Vib., 333 (2014), 2483–2503. https://doi.org/10.1016/j.jsv.2013.12.015 doi: 10.1016/j.jsv.2013.12.015
    [55] S. Wang, G. H. Huang, B. T. Yang, An interval-valued fuzzy-stochastic programming approach and its application to municipal solid waste management, Environ. Modell. Softw., 29 (2012), 24–36. https://doi.org/10.1016/j.jsv.2013.12.015 doi: 10.1016/j.jsv.2013.12.015
    [56] P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. https://doi.org/10.1016/j.envsoft.2011.10.007 doi: 10.1016/j.envsoft.2011.10.007
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1266) PDF downloads(99) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog