Research article

Decay estimates for Schrödinger systems with time-dependent potentials in 2D

  • Received: 05 April 2023 Revised: 29 April 2023 Accepted: 08 May 2023 Published: 12 June 2023
  • MSC : 35B40, 35Q55

  • We consider the Cauchy problem for systems of nonlinear Schrödinger equations with time-dependent potentials in 2D. Under assumptions about mass resonances and potentials, we prove the global existence of the nonlinear Schrödinger systems with small initial data. In particular, by analyzing the operator $ \Delta $ and time-dependent potentials $ {V_{j}} $ separately, we show that the small global solutions satisfy time decay estimates of order $ O((t\log{t})^{-1}) $ when $ p = 2 $, and the small global solutions satisfy time decay estimates of order $ O({t}^{-1}) $ when $ p > 2 $.

    Citation: Shuqi Tang, Chunhua Li. Decay estimates for Schrödinger systems with time-dependent potentials in 2D[J]. AIMS Mathematics, 2023, 8(8): 19656-19676. doi: 10.3934/math.20231002

    Related Papers:

  • We consider the Cauchy problem for systems of nonlinear Schrödinger equations with time-dependent potentials in 2D. Under assumptions about mass resonances and potentials, we prove the global existence of the nonlinear Schrödinger systems with small initial data. In particular, by analyzing the operator $ \Delta $ and time-dependent potentials $ {V_{j}} $ separately, we show that the small global solutions satisfy time decay estimates of order $ O((t\log{t})^{-1}) $ when $ p = 2 $, and the small global solutions satisfy time decay estimates of order $ O({t}^{-1}) $ when $ p > 2 $.



    加载中


    [1] R. Carles, Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., 9 (2011), 937–964. https://doi.org/10.4310/cms.2011.v9.n4.a1 doi: 10.4310/cms.2011.v9.n4.a1
    [2] R. Carles, J. D. Silva, Large time behavior in nonlinear Schrödinger equations with time dependent potential, Commun. Math. Sci., 13 (2015), 443–460. http://doi.org/10.4310/CMS.2015.v13.n2.a9 doi: 10.4310/CMS.2015.v13.n2.a9
    [3] M. Kawamoto, R. Muramatsu, Asymptotic behavior of solutions to nonlinear Schrödinger equations with time-dependent harmonic potentials, J. Evol. Equ., 21 (2021), 699–723. https://doi.org/10.1007/s00028-020-00597-8 doi: 10.1007/s00028-020-00597-8
    [4] I. P. Naumkin, Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential, J. Math. Phys., 57 (2016), 051501. https://doi.org/10.1063/1.4948743 doi: 10.1063/1.4948743
    [5] P. Germain, F. Pusateri, F. Rousset, The nonlinear Schrödinger equation with a potential, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 35 (2018), 1477–1530. https://doi.org/10.1016/j.anihpc.2017.12.002 doi: 10.1016/j.anihpc.2017.12.002
    [6] S. Masaki, J. Murphy, J. Segata, Modified scattering for the one-dimensional cubic NLS with a repulsive delta potential, Int. Math. Res. Notices, 2019 (2019), 7577–7603. https://doi.org/10.1093/imrn/rny011 doi: 10.1093/imrn/rny011
    [7] N. Hayashi, P. I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Am. J. Math., 120 (1998), 369–389. https://doi.org/10.1353/ajm.1998.0011 doi: 10.1353/ajm.1998.0011
    [8] J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270–3273. https://doi.org/10.1063/1.526074 doi: 10.1063/1.526074
    [9] Y. Tsutsumi, K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc., 11 (1984), 186–188. https://doi.org/10.1090/S0273-0979-1984-15263-7 doi: 10.1090/S0273-0979-1984-15263-7
    [10] N. Kita, A. Shimomura, Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, J. Math. Soc. Japan, 61 (2009), 39–64. https://doi.org/10.2969/jmsj/06110039 doi: 10.2969/jmsj/06110039
    [11] G. Hoshino, Dissipative nonlinear Schrödinger equations for large data in one space dimension, Commun. Pur. Appl. Anal., 19 (2020), 967–981. https://doi.org/10.3934/cpaa.2020044 doi: 10.3934/cpaa.2020044
    [12] G. Hoshino, Scattering for solutions of a dissipative nonlinear Schrödinger equation, J. Differ. Equations, 266 (2019), 4997–5011. https://doi.org/10.1016/j.jde.2018.10.016 doi: 10.1016/j.jde.2018.10.016
    [13] N. Hayashi, P. I. Naumkin, Scattering problem for the supercritical nonlinear Schrödinger equation in 1d, Funkc. Ekvacioj, 58 (2015), 451–470. https://doi.org/10.1619/fesi.58.451 doi: 10.1619/fesi.58.451
    [14] S. Cuccagna, N. Visciglia, V. Georgiev, Decay and scattering of small solutions of pure power NLS in R with p$>$3 and with a potential, Commun. Pure Appl. Math., 67 (2014), 957–981. https://doi.org/10.1002/cpa.21465 doi: 10.1002/cpa.21465
    [15] V. Georgiev, C. Li, On the scattering problem for the nonlinear Schrödinger equation with a potential in 2D, Physica D, 398 (2019), 208–218. https://doi.org/10.1016/j.physd.2019.03.010 doi: 10.1016/j.physd.2019.03.010
    [16] V. Georgiev, B. Velichkov, Decay estimates for the supercritical 3-D Schrödinger equation with rapidly decreasing potential, In: Evolution equations of hyperbolic and Schrödinger type. Progress in mathematics, Basel: Birkhäuser, 301 (2012), 145–162. https://doi.org/10.1007/978-3-0348-0454-7_8
    [17] Z. Li, L. Zhao, Decay and scattering of solutions to nonlinear Schrödinger equations with regular potentials for nonlinearities of sharp growth, J. Math. Study, 50 (2017), 277–290. https://doi.org/10.4208/jms.v50n3.17.05 doi: 10.4208/jms.v50n3.17.05
    [18] S. Katayama, C. Li, H. Sunagawa, A remark on decay rates of solutions for a system of quadratic nonlinear Schrödinger equations in 2D, Differ. Integral Equ., 27 (2014), 301–312. https://doi.org/10.57262/die/1391091368 doi: 10.57262/die/1391091368
    [19] W. Tang, Y. Wang, Z. Li, Numerical simulation of fractal wave propagation of a multi-dimensional nonlinear fractional-in-space Schrödinger equation, Phys. Scripta, 98 (2023), 045205. https://doi.org/10.1088/1402-4896/acbdd0 doi: 10.1088/1402-4896/acbdd0
    [20] N. Hayashi, C. Li, P. I. Naumkin, On a system of nonlinear Schrödinger equations in 2d, Differ. Integral Equ., 24 (2011), 417–434. https://doi.org/10.57262/die/1356018911 doi: 10.57262/die/1356018911
    [21] C. Li, Y. Nishii, Y. Sagawa, H. Sunagawa, Large time asymptotics for a cubic nonlinear Schrödinger system in one space dimension, Funkc. Ekvacioj, 64 (2021), 361–377. https://doi.org/10.1619/fesi.64.361 doi: 10.1619/fesi.64.361
    [22] C. Li, Y. Nishii, Y. Sagawa, H. Sunagawa, Large time asymptotics for a cubic nonlinear Schrödinger system in one space dimension, II, Tokyo J. Math., 44 (2021), 411–416. https://doi.org/10.3836/tjm/1502179340 doi: 10.3836/tjm/1502179340
    [23] C. Li, On a system of quadratic nonlinear Schrödinger equations and scale invariant spaces in 2D, Differ. Integral Equ., 28 (2015), 201–220. https://doi.org/10.57262/die/1423055224 doi: 10.57262/die/1423055224
    [24] N. Hayashi, T. Ozawa, Scattering theory in the weighted $\mathbf{L}^2(\mathbb{R}^n)$ spaces for some Schrödinger equations, Annales De L Institut Henri Poincare-physique Theorique, 48 (1988), 17–37. http://eudml.org/doc/76388
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1014) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog