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1. Introduction

We consider the following Cauchy problem for the nonlinear Schrödinger system in space
dimension two {

i∂tv j +
1

2m j
∆V jv j = G j(v1, v2), t > 0, x ∈ R2,

v j(0, x) = ϕ j(x), x ∈ R2,
(1.1)

where ∂t = ∂/∂t, ∆V j = ∆ − V j(t, x),∆ =
∑2

j=1 ∂
2/∂x2

j ,V j(t, x) is a prescribed R-valued function on
[0,∞) × R2, G j(v1, v2) = K j(v1, v2) + F j(v1, v2), K j(v1, v2) = λ j|v j|

p−1v j, F1 (v1, v2) = v1v2, F2 (v1, v2) =
v2

1, λ j ∈ C\{0}, p ≥ 2,m j is a mass of a particle, ϕ j(x) is a prescribed C-valued function on R2, and
j = 1, 2. In this paper, our aim is to prove the time decay estimates of solutions to (1.1)

∥v∥L∞(R2) :=
2∑

j=1

∥v j∥L∞(R2) ⩽
C1

1 + t
; i f p > 2
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and

∥v∥L∞(R2) :=
2∑

j=1

∥v j∥L∞(R2) ≤
C2

(1 + t) log(2 + t)
; i f p = 2

for all t ≥ 0, where C1,C2 > 0, when the small initial data ϕ j(x) belongs to Ḣ0,α(R2) ∩ Ḣ0,β(R2),
2m1 = m2, ℑλ j < 0 and V j(t, x) satisfies

∥V j∥Ḣα,0(R2)∩Ḣβ,0(R2) ≤ 2 max{m1,m2}c1(1 + t)−β

for all t ≥ 0, where c1 > 0, 0 < α < 1 < β < 2, j = 1, 2 and

∥U 1
m j

(−t)V j∥Ḣ0,α(R2)∩Ḣ0,β(R2) ≤ 2 max{m1,m2}c2(1 + t)−θ

for all t ≥ 0, where Uσ(t) = F −1E(t)σF , E(t) = e−
i
2 t|ξ|2 , σ , 0,F and F −1 denote the Fourier and its

inverse transform operators, c2 > 0, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ, and j = 1, 2.
The Cauchy problem for nonlinear Schrödinger equations with time-dependent potentials{

i∂tv + 1
2∆Vv = f (v), t > 0, x ∈ Rn,

v(0, x) = ϕ(x), x ∈ Rn (1.2)

appears in physics, where ∆V = ∆−V(t, x),V(t, x) is a prescribed R-valued function on [0,∞)×Rn, f :
C → C. If the nonlinear term f (v) = λ|v|q−1v, q > 1 and λ ∈ R, the Cauchy problem (1.2) was
considered from the mathematical point of view in [1] and [2]. In [1], the global existence of solutions
to (1.2) with f (v) = λ|v|q−1v was studied when the initial data ϕ(x) ∈ H1,0(Rn) ∩ H0,1(Rn) and the
external potential V(t, x) satisfy some assumptions. The time decay estimates of solutions to (1.2)
with f (v) = λ|v|q−1v were considered if the initial data ϕ(x) ∈ H1,0(Rn) ∩ H0,1(Rn), λ > 0, and the
time-dependent potential V(t, x) meets some conditions. When the time-dependent potential V(t, x) =
σ(t)|x|2/2 and the nonlinear term f (v) = νFL(v)v + µFS (v)v in (1.2), where FL : C → R, FS : C → R,
and ν, µ ∈ R, the asymptotic behavior and time decay estimates of solutions to (1.2) for small initial
data satisfying ϕ(x) ∈ Hγ,0(R2) ∩ H0,γ(R2) with γ > n/2 were investigated in [3]. In [4], a sharp time
decay estimate for the global in time solution to (1.2) with cubic nonlinear term and the potential V(x)
which satisfies < · >s V ∈ W1,1(R) was obtained in 1D. The cubic nonlinear Schrödinger equation with
potential in 1D also has been studied in [5] and [6]. If the time-dependent potential V(t, x) ≡ 0, then
the Cauchy problem (1.2) becomes{

i∂tv + 1
2∆v = f (v), t > 0, x ∈ Rn,

v(0, x) = ϕ(x), x ∈ Rn.
(1.3)

When f (v) = λ|v|q−1v + κ|v|η−1v, λ, κ ∈ R and q − 1 = 2/n < κ − 1, (1.3) was investigated in [7]. It
is known that η = 2/n is the critical exponent if the scattering problem for (1.3) with f (v) = κ|v|η−1v
and κ > 0 is considered (see [8] and [9]). If the small initial data ϕ(x) belongs to Hγ,0(Rn) ∩ H0,γ(Rn)
with n/2 < γ ≤ q = 1 + 2/n, the existence of modified scattering states for (1.3) was studied, and
the sharp time decay estimate of solutions was proved in [7]. When n = 1, f (v) = λ|v|q−1v and λ =
λ1 + iλ2, λ j ∈ R, λ2 < 0, |λ2| >

q−1
2
√

q |λ1| and 1 < q ≤ 3, (1.3) with initial data ϕ(x) ∈ H1,0(R) ∩ H0,1(R)
was studied in [10]. The time decay estimates and large time asymptotics of the solution for arbitrarily
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large initial data were presented if q = 3 or q < 3 and q is close to 3. In [11], the same equation was
considered. The asymptotic behavior of solutions of the Cauchy problem for initial data ϕ(x) ∈ H0,γ(R)
with 1/2 < γ ≤ 1 was studied. In [12], the scattering for solutions to (1.3) was shown in the case of
f (v) = λ|v|q−1v, 1 + 4

n+2γ < q < 1 + 4
n , 0 < γ ≤ min{ n2 , 1} and λ = λ1 + iλ2, λ j ∈ R, λ2 < 0, |λ2| >

q−1
2
√

q |λ1|.

If f (v) =
∑

j,0 λ j|v|σ j− jv j, λ j ∈ C, σ j > 3 and n = 1 in (1.3), the existence of the scattering operator was
considered in [13]. If the potential V(t, x) ≡ V(x) and f (v) = g(|v|2)v, then from (1.2) we have{

i∂tv + 1
2∆Vv = g(|v|2)v, t > 0, x ∈ Rn,

v(0, x) = ϕ(x), x ∈ Rn,
(1.4)

where ∆V = ∆ − V(x),V(x) is a prescribed R-valued function on Rn, g : C → R. There is some
research on the asymptotic behavior of solutions to (1.4) (see [14–17], and references cited therein ).
In [15], when V(x) is a real-valued measurable function defined in R2, f (v) = λ|v|2σv, σ > 1

2 , λ ∈ C\{0}
and ℑλ ≤ 0, the scattering problem for (1.4) was studied, and by using the equivalence between the
operators (−∆V)

s
2 and (−∆)

s
2 in L2 norm sense for 0 ≤ s < 1, the time decay estimates of the solution

were obained as O(t−1) in L∞(R2) as t → +∞. In the case of σ > 1
2 , the solution of a system of

the equations in 2D has the same time decay rate under some assumptions. In [18] the solution of
the nonlinear Schrödinger systems with quadratic nonlinearities in two space dimensions decays like
O(t−1(log t)−1) in L∞(R2) as t → +∞, when V(x) ≡ 0. In [19], numerical method is considerd by
using Fourier spectral method to solve the multidimensional nonlinear fractional-in-space Schrödinger
equation involving the fractional Laplacian operator and the numerical method is effective for long
time simulation of integer-order Schrödinger equation.

We find that the time decay estimates of the solutions of the Cauchy problem for two dimensional
critical NLS system with potentials is an unsolved problem. So we consider the following nonlinear
Schrödinger system. Let W j(t, x) = 1

2m j
V j(t, x) for j = 1, 2. From (1.1) we have

{
i∂tv j +

1
2m j
∆v j −W jv j = G j(v1, v2), t > 0, x ∈ R2,

v j(0, x) = ϕ j(x), x ∈ R2.
(1.5)

We assume that the masses of particles in the Cauchy problem (1.5) and the time-dependent R-
valued potential W j(t, x) satisfies the following hypotheses.

(H1) 2m1 = m2.
(H2) ∥W j∥Ḣα,0(R2)∩Ḣβ,0(R2) ≤ c1(1 + t)−β for t ≥ 0, where c1 > 0, 0 < α < 1 < β < 2, j = 1, 2.
(H3) ∥U 1

m j
(−t)W j∥Ḣ0,α(R2)∩Ḣ0,β(R2) ≤ c2(1 + t)−θ for all t ≥ 0, where Uσ(t) = F −1E(t)σF , E(t) =

e−
i
2 t|ξ|2 , σ , 0,F and F −1 denote the Fourier and its inverse transform operators, c2 > 0, 0 < α < 1 <

1 + 2µ < β < 2, 0 < θ < µ, and j = 1, 2.
We use the assumption of mass resonance (H1) to deal with the nonlinearity F j(v1, v2) in (1.5) for

j = 1, 2. The assumptions of the potential W j(t, x) are (H2) and (H3). The assumption (H2) is used to
investigate Lemma 2.3 and Lemma 3.2. The assumption (H3) is applied to the proofs of Lemma 3.2
and Lemma 3.4.

If the mass resonance condition (H1) holds, then the Cauchy problem (1.5) meet the following
gauge condition

G j(v1, v2) = eim jθG j(e−im1θv1, e−im2θv2), j = 1, 2
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for any θ ∈ R. If W j = 0 for j = 1, 2 in (1.5), then the system (1.5) becomes{
i∂tv j +

1
2m j
∆v j = λ j|v j|v j + F j(v1, v2), t > 0, x ∈ R2,

v j(0, x) = ϕ j(x), x ∈ R2,
(1.6)

where F1 (v1, v2) = v1v2, F2 (v1, v2) = v2
1,m j is a mass of a particle, and ϕ j(x) is a prescribed C-valued

function on R2 for j = 1, 2. The time decay of small solutions to (1.6) with ℑλ j ≤ 0 for j = 1, 2 was
studied in the situation of small initial data ϕ j ∈ Hγ,0(R2) ∩ H0,γ(R2) with 1 < γ < 2 in [18]. If λ j = 0
for j = 1, 2, then from (1.6) we have

i∂tv1 +
1

2m1
∆v1 = v1v2, t > 0, x ∈ R2,

i∂tv2 +
1

2m2
∆v2 = v2

1, t > 0, x ∈ R2,

(v1(0, x), v2(0, x)) = (ϕ1(x), ϕ2(x)), x ∈ R2.

(1.7)

In [20], global existence and time decay estimates of solutions to (1.7) for small initial data
v j(0, x) ∈ H2,0(R2) ∩ H0,2(Rn) with j = 1, 2 were investigated under the mass resonance condition
2m1 = m2. Large-time asymptotic behavior of solutions to the Cauchy problem for nonlinear
Schrödinger equations 

i∂tv1 +
1
2∆v1 = −i|v2|

2v1, t > 0, x ∈ R,
i∂tv2 +

1
2∆v2 = −i|v1|

2v2, t > 0, x ∈ R,
(v1(x, 0), v2(x, 0)) = (ϕ1, ϕ2), x ∈ R

(1.8)

was considered in [21] and [22]. As far as we know, the time decay of the Cauchy problem (1.5) with
the time-dependent potentials V j(t, x) has not been shown, where j = 1, 2.

Multiplying the equations of (1.5) by iv j respectively, and taking the real parts of the result, we
obtain {

∂t|v1|
2
− 1

m1
ℜ((i∆v1)v1) + 2Re(iW1|v1|

2) = −2ℜ(iλ1|v1|
p+1) − 2ℜ(iv1

2v2),
∂t|v2|

2
− 1

m2
ℜ((i∆v2)v2) + 2Re(iW2|v2|

2) = −2ℜ(iλ1|v2|
p+1) − 2ℜ(iv2

1v2).

Since the assumption W j(t, x) is the R-valued potential, and by integrating in space, we find ∂t∥v1∥
2
L2(R2) = 2ℑλ1∥v1∥

p+1
Lp+1(R2) − 2

∫
R2ℜ

(
iv1

2v2

)
dx,

∂t∥v2∥
2
L2(R2) = 2ℑλ2∥v2∥

p+1
Lp+1(R2) − 2

∫
R2ℜ

(
iv2

1v2

)
dx.

(1.9)

Under the assumption that ℑλ j ≤ 0 for j = 1, 2, by (1.9) we obtain

∂t

(
∥v1∥

2
L2(R2) + ∥v2∥

2
L2(R2)

)
≤ 0.

Therefore, we prove stability in time of solutions in the neighborhood of solutions to a suitable
approximate equation. Our main purpose in this paper is to show time decay estimates of solutions
to the Cauchy problem (1.5) with small initial data in Ḣ0,α(R2) ∩ Ḣ0,β(R2), 0 < α < 1 < β < 2.
Combining the methods of [7] and [18], we obtain the following result under the assumptions that
ℑλ j < 0 for j = 1, 2, (H1), (H2) and (H3) hold. Our main idea is to consider ∆v j and W jv j separately.
By the assumptions (H2) and (H3) of the potential W j, we can analyze the linear term W jv j of the
system (1.5). The time decay estimates of the solutions to the nonlinear Schrödinger equations are
studies in [15] by regarding the 1

m j
∆ −W j as one whole. Our method differs from the approaches. The

potential weakness of this paper is that the potentials W j satisfy the decaying condition (H2) and (H3).
So if not, whether the time decay estimates of the solutions to the system (1.5) can be obtained is an
open problem.
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Theorem 1.1. Assume that (1.5) satisfies the mass resonance condition (H1), the time-dependent
potential W j(t, x) satisfies (H2), (H3) and ℑλ j < 0, j = 1, 2. Then there exist constants ε0 > 0 and
C1,C2 > 0 such that for any ε ∈ (0, ε0) and

∥ϕ∥Ḣ0,α(R2)∩Ḣ0,β(R2) =

2∑
j=1

∥ϕ j∥Ḣ0,α(R2)∩Ḣ0,β(R2) ≤ ε,

where 0 < α < 1 < β < 2, there exist a unique global solution v = (v1, v2) of (1.5) satisfying

U 1
m j

(−t)v j ∈ C([1,∞), Ḣ0,α(R2) ∩ Ḣ0,β(R2)), j = 1, 2

and the time decay estimates

∥v∥L∞(R2) =

2∑
j=1

∥v j∥L∞(R2) ⩽
C1

1 + t
; i f p > 2, (1.10)

∥v∥L∞(R2) =

2∑
j=1

∥v j∥L∞(R2) ≤
C2

(1 + t) log(2 + t)
; i f p = 2 (1.11)

for t ≥ 0.

Remark 1.1. By Lemma 2.1, we have

∥W j∥L∞(R2) = ∥F
−1FW j∥L∞(R2)

≤ C∥FW j∥Ḣ0,α(R2)∩Ḣ0,β(R2)

≤ C∥W j∥Ḣα,0(R2)∩Ḣβ,0(R2)

(1.12)

where 0 < α < 1 < β < 2, j = 1, 2. By the assumption (H2) and (1.12), we have

∥W j∥L∞(R2) ≤ Ct−β (1.13)

for t ≥ 1, which is used in the proof of Lemma 3.4, where 0 < α < 1 < β < 2, j = 1, 2. We also
get Lemma 2.3 by the assumption (H2) and some other conditions, which is applied to the proof of
Lemma 3.2.

The rest of this paper is organized as follows. In Section 2, we give some notations and basic
lemmas. We prove Theorem 1.1 in Section 3 by using the strategy introduced in [18, 23].

2. Preliminaries

In this section, we give some estimates as preliminaries. In what follows, we use the same notations
both for the vector function spaces and the scalar ones. For any p with 1 ≤ p ≤ ∞, Lp(R2) denotes

AIMS Mathematics Volume 8, Issue 8, 19656–19676.
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the usual Lebesgue space with the norm ∥ϕ∥LP(R2) =
(∫
R2 |ϕ(x)|pdx

) 1
p , if 1 ≤ p < ∞ and ∥ϕ∥L∞(R2) = ess

· sup
x∈R2
|ϕ(x)|. For any m, s ∈ R, weighted Sobolev space Hm,s(R2) is defined by

Hm,s(R2) =

 f = ( f1, f2) ∈ L2(R2); ∥ f ∥Hm,s(R2) =

2∑
j=1

∥∥∥ f j

∥∥∥
Hm,s(R2)

< ∞

 ,
where the Sobolev norm is defined as

∥ f j∥Hm,s(R2) =
∥∥∥(1 + |x|2)

s
2 (1 − ∆)

m
2 f j

∥∥∥
L2(R2)

for j = 1, 2. Also we define the homogeneous Sobolev seminorm ∥ f j∥Ḣm,s(R2) as

∥ f j∥Ḣm,s(R2) =
∥∥∥|x|s(−∆)

m
2 f j

∥∥∥
L2(R2)

for j = 1, 2.
We define the dilation operator by

(Dαϕ) (x) =
1
iα
ϕ
( x
α

)
, for α , 0,

and
E(t) = e−

i
2 t|ξ|2 , M(t) = e−

i
2 t|x|2 , for t , 0.

Let Uα (t) = F −1E(t)αF with α , 0, where the Fourier transform of f is

(F f )(ξ) =
1

2π

∫
R2

e−ix·ξ f (x)dx,

and the inverse Fourier transform of g is

(F −1g)(x) =
1

2π

∫
R2

eix·ξg(ξ)dξ.

The evolution operator Uα (t) and inverse evolution operator Uα (−t) for t , 0, are written as

(Uα (t) ϕ) (x) = M(t)−
1
αDαt

(
FM(t)−

1
αϕ

)
(x)

and
(Uα (−t) ϕ) (x) = M(t)

1
α

(
F −1D−1

αt M(t)
1
αϕ

)
(x) ,

respectively.
The operator |J 1

m
|s(t) is given by

|J 1
m
|s(t) = U 1

m
(t)|x|sU 1

m
(−t), s > 0,

which is represented as

|J 1
m
|s(t) = M−m

(
−

t2

m2∆

) s
2

Mm

AIMS Mathematics Volume 8, Issue 8, 19656–19676.
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for t , 0. Let [E, F] = EF − FE. We have the commutator relations[
i∂t +

1
2m
∆, |J 1

m
|s(t)

]
≡ 0

for s > 0. These formulas are essential tools for studying the asymptotic behavior of solutions to (1.1)
(see [24]). And in what follows, we denote several positive constants by the same letter C, which may
vary from one line to another.

We start with the following lemma.

Lemma 2.1. Let 0 < s1 < 1 < s2. Then we have

∥ f ∥L1(R2) ≤ C∥ f ∥Ḣ0,s1 (R2)∩Ḣ0,s2 (R2). (2.1)

By the Cauchy-Schwarz inequality, we have Lemma 2.1. We shall not give the proof here.
We next recall the well known results (see [7]).

Lemma 2.2. Let 0 ≤ s < 2, ρ ≥ 2,m > 0. Then we have

∥U 1
m

(−t)|v|ρ−1v∥Ḣ0,s(R2) ≤ C∥v∥ρ−1
L∞(R2)∥U 1

m
(−t)v∥Ḣ0,s(R2), (2.2)

∥|v|ρ−1v∥Ḣs,0(R2) ≤ C∥v∥ρ−1
L∞(R2)∥v∥Ḣs,0(R2), (2.3)

and

∥ f g∥Ḣs,0(R2) ≤ C
(
∥ f ∥L∞(R2)∥g∥Ḣs,0(R2) + ∥ f ∥Ḣs,0(R2)∥g∥L∞(R2)

)
. (2.4)

Using the factorization formula U 1
m j

(−t) = −Mm jF −1E
1

m j D m j
t

and the assumption (H2), we have

Lemma 2.3. LetM−1
m j
= FM−m jF −1, m j > 0 and j = 1, 2. If W j satisfies the assumption (H2), then

there exists a constant C3 > 0 such that∥∥∥∥∥E−
1

m jM−1
m j
FU 1

m j
(−t)W j

∥∥∥∥∥
Ḣα,0(R2)∩Ḣβ,0(R2)

≤ C3

for t ≥ 1, where 0 < α < 1 < β < 2.

Proof. By using the factorization formula U 1
m j

(−t) = −Mm jF −1E
1

m j D m j
t
, we have∥∥∥∥∥E−

1
m jM−1

m j
FU 1

m j
(−t)W j(t, x)

∥∥∥∥∥
Ḣs,0(R2)

=

∥∥∥∥∥−E−
1

m jFM−m j Mm jF −1E
1

m j D m j
t

W j(t, x)
∥∥∥∥∥

Ḣs,0(R2)

≤
t

m j

∥∥∥∥∥∥|ξ|sF
(
W j(t,

xt
m j

)
)∥∥∥∥∥∥

L2(R2)

≤
m j

t

∥∥∥∥∥|ξ|s (FW j

)
(t,
ξm j

t
)
∥∥∥∥∥

L2(R2)

≤
ts

ms
j
∥W j∥Ḣs,0(R2)

AIMS Mathematics Volume 8, Issue 8, 19656–19676.
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for t ≥ 1, where s = α or β. Then we obtain that

∥E−
1

m jM−1
m j
FU 1

m j
(−t)W j∥

Ḣα,0(R2)∩Ḣβ,0(R2)
≤

tβ

min{ms
1,m

s
2}
∥W j∥Ḣα,0(R2)∩Ḣβ,0(R2) (2.5)

for t ≥ 1, where 0 < α < 1 < β < 2. By the assumption (H2) and (2.5), we get

∥E−
1

m jM−1
m j
FU 1

m j
(−t)W j∥

Ḣα,0(R2)∩Ḣβ,0(R2)
≤ C3

for t ≥ 1, where C3 =
c1

min{ms
1,m

s
2}

, and 0 < α < 1 < β < 2. □

3. Proof of Theorem 1.1

3.1. A priori estimates of solutions

We define the function space XT as follows

XT =

{
U 1

m j
(t) f j ∈

(
(C ∩ L∞)

(
[0,T ]; Ḣ0,α(R2) ∩ Ḣ0,β(R2)

))
;

∥ f ∥XT = ∥|J 1
m
|α f ∥Lη([0,T ];Lζ (R2)) + ∥|J 1

m
|β f ∥Lη([0,T ];Lζ (R2))

+∥U 1
m

(−t) f ∥L∞([0,T ];Ḣ0,α(R2)∩Ḣ0,β(R2)), η =
4

1 − α
, ζ =

4
1 + α

}
,

where T > 0 and U 1
m

(t) f=
(
U 1

m1
(t) f1,U 1

m2
(t) f2

)
. We can obtain the local existence of solutions to (1.1)

by the standard contraction mapping principle (see [23]).
Multiplying both sides of (1.5) by D 1

m j
FU 1

m j
(−t), j = 1, 2, we use the factorization formula

FU 1
m j

(−t) = −Mm j E
1

m j D m j
t

withMm j = FMm jF −1 to get

FU 1
m j

(−t)G j(v1, v2) = −Mm j E
1

m j D m j
t
G j(v1, v2).

Using the identity operator I = −D t
m j

D m j
t
, j = 1, 2, we have

D m j
t
G j(v1, v2) = D m j

t
G j

(
−D t

m1
D m1

t
v1,−D t

m2
D m2

t
v2

)
=

t
im j

G j

(
−

im j

t
D m j

t
D t

m1
D m1

t
v1,−

im j

t
D m j

t
D t

m2
D m2

t
v2

)
=

t
im j

G j

(
−

m j

t
D m j

m1
D m1

t
v1,−

m j

t
D m j

m2
D m2

t
v2

)
.

We now use the identity DaE−b f (t, x) = 1
iae

ibt|ξ|2

2a2 f
(
t, x

a

)
= E

b
a2 Da f (t, x) for a , 0 to get

D m j
mk

D mk
t

vk = D m j
mk

E−
1

mk E
1

mk D mk
t

vk = E
−

mk
m j2 D m j

mk
E

1
mk D mk

t
vk.

AIMS Mathematics Volume 8, Issue 8, 19656–19676.



19664

Let θ j = e
−

t|ξ|2

2m j2 , then we have

E
−

mk
m j2 = e

i
2 t mk

m j2
|ξ|2

= e−imkθ j .

Let ṽk = E
1

mk D mk
t

vk, k = 1, 2. By the factorization formula FU 1
mk

(−t) = −Mmk E
1

mk D mk
t

, we have

ṽk = −M
−1
mk
FU 1

mk
(−t)vk. By the mass resonance condition (H1), we get

FU 1
m j

(−t)G j(v1, v2)

= iMm j E
1

m j
t

m j
G j

(
−

m j

t
e−im1θ j D m j

m1
ṽ1,−

m j

t
e−im2θ j D m j

m2
ṽ2

)
= iMm j E

1
m j

t
m j

e−im jθ jG j

(
−

m j

t
D m j

m1
ṽ1,−

m j

t
D m j

m2
ṽ2

)
= iMm j

t
m j

K j

(
−

m j

t
D m j

m1
ṽ1,−

m j

t
D m j

m2
ṽ2

)
+ iMm j

t
m j

F j

(
−

m j

t
D m j

m1
ṽ1,−

m j

t
D m j

m2
ṽ2

)
= iMm j

m j
p−1

tp−1 K j

(
−D m j

m1
M−1

m1
FU 1

m1
(−t)v1,−D m j

m2
M−1

m2
FU 1

m2
(−t)v2

)
+ iMm j

m j

t
F j

(
−D m j

m1
M−1

m1
FU 1

m1
(−t)v1,−D m j

m2
M−1

m2
FU 1

m2
(−t)v2

)
, j = 1, 2.

Next we consider FU 1
m j

(−t)
(
W jv j

)
similarly, we have

D m j
t

W jv j =
t

im j

(
im j

t
D m j

t
W j

) (
im j

t
D m j

t
v j

)
.

Let D m j
t

W j = E−
1

m j E
1

m j D m j
t

W j, D m j
t

v j = E−
1

m j E
1

m j D m j
t

v j, and W̃ j = E
1

m j D m j
t

W j, ṽ j = E
1

m j D m j
t

v j, j = 1, 2.

By the factorization formula FU 1
m j

(−t) = −Mm j E
1

m j D m j
t

, we have W̃ j = −M
−1
m j
FU 1

m j
(−t)W j, ṽ j =

−M−1
m j
FU 1

m j
(−t)v j. By the definition of the operator E(t), we get

FU 1
m j

(−t)W jv j

= iMm j E
1

m j
t

m j

(
im j

t
E−

1
m j W̃ j

) (
im j

t
E−

1
m j ṽ j

)
= iMm j

t
m j

(
im j

t
E−

1
m j W̃ j

) (
im j

t
ṽ j

)
= iMm j

m j

t

(
−iE−

1
m jM−1

m j
FU 1

m j
(−t)W j

) (
−iM−1

m j
FU 1

m j
(−t)v j

)
, j = 1, 2.

We set

R1 j = i
(
Mm j − I

) m j
p−1

tp−1 K j

(
−D m j

m1
M−1

m1
FU 1

m1
(−t)v1,−D m j

m2
M−1

m2
FU 1

m2
(−t)v2

)
+ i

(
Mm j − I

) m j

t
F j

(
−D m j

m1
M−1

m1
FU 1

m1
(−t)v1,−D m j

m2
M−1

m2
FU 1

m2
(−t)v2

)
+ i

(
Mm j − I

) m j

t

(
−iE−

1
m jM−1

m j
FU 1

m j
(−t)W j

) (
−iM−1

m j
FU 1

m j
(−t)v j

)
,
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R2 j = i
m j

p−1

tp−1 K j

(
−D m j

m1
M−1

m1
FU 1

m1
(−t)v1,−D m j

m2
M−1

m2
FU 1

m2
(−t)v2

)
− i

m j
p−1

tp−1 K j

(
−D m j

m1
FU 1

m1
(−t)v1,−D m j

m2
FU 1

m2
(−t)v2

)
+ i

m j

t
F j

(
−D m j

m1
M−1

m1
FU 1

m1
(−t)v1,−D m j

m2
M−1

m2
FU 1

m2
(−t)v2

)
− i

m j

t
F j

(
−D m j

m1
FU 1

m1
(−t)v1,−D m j

m2
FU 1

m2
(−t)v2

)
+ i

m j

t

(
−iE−

1
m jM−1

m j
FU 1

m j
(−t)W j

) (
−iM−1

m j
FU 1

m j
(−t)v j

)
− i

m j

t

(
−iE−

1
m jFU 1

m j
(−t)W j

) (
−iFU 1

m j
(−t)v j

)
and u j = D 1

m j
FU 1

m j
(−t)v j, S j = D 1

m j
FU 1

m j
(−t)W j, then we have

(
FU 1

m j
(−t)G j(v1, v2)

)
(t, ξ) +

(
FU 1

m j
(−t)W jv j

)
(t, ξ)

= i
m j

p−1

tp−1 K j

(
−D m j

m1
D−1

1
m1

u1,−D m j
m2

D−1
1

m2

u2

)
(t, ξ)

+ i
m j

t
F j

(
−D m j

m1
D−1

1
m1

u1,−D m j
m2

D−1
1

m2

u2

)
(t, ξ)

+ i
m j

t

(
−iE−

1
m j D−1

1
m j

S j

) (
−iD−1

1
m j

u j

)
(t, ξ) +

2∑
l=1

Rl j

= i
m j

p−1

tp−1 K j

(
−

1
m j

u1,−
1

m j
u2

) (
t,
ξ

m j

)
+ i

m j

t
F j

(
−

1
m j

u1,−
1

m j
u2

) (
t,
ξ

m j

)
+ i

m j

t

(
1

m j
E−

1
m j S j

(
t,
ξ

m j

)) (
1

m j
u j

(
t,
ξ

m j

))
+

2∑
l=1

Rl j.

Multiplying both sides of the above identity by D 1
m j

, we have

D 1
m j
FU 1

m j
(−t)G j(v1, v2)

(
t,
ξ

m j

)
+ D 1

m j
FU 1

m j
(−t)W j

(
t,
ξ

m j

)
v j

(
t,
ξ

m j

)
=

1
tp−1 K j (u1, u2) (t, ξ) +

1
t

F j (u1, u2) (t, ξ) +
1
t

((
E−m jS j

)
u j

)
(t, ξ) + D 1

m j

2∑
l=1

Rl j.

Therefore, from (1.5) we have

i∂tu j =
λ j

tp−1 |u j|
p−1u j +

1
t

F j(u1, u2) +
1
t

(
E−m jS j

)
u j + D 1

m j

2∑
l=1

Rl j (3.1)
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for j = 1, 2. Multiplying both sides of (3.1) by u j, taking the imaginary parts, we obtain

∂t

2∑
j=1

|u j|
2 =

2
tp−1ℑ

2∑
j=1

(λ j|u j|
p+1

) + 2ℑ

 2∑
j=1

(
1
t

F j (u1, u2)
)

u j


+ 2ℑ

 2∑
j=1

(
1
t

(
E−m jS j

)
u j

)
u j

 + 2ℑ

 2∑
j=1

D 1
m j

2∑
l=1

Rl j

 u j

 .
By the definitions of the nonlinear terms F1 (u1, u2) = u1u2, F2 (u1, u2) = u2

1, and ℑλ j < 0 for j = 1, 2,
we obtain

∂t

2∑
j=1

|u j|
2 ≤ 2ℑ

 2∑
j=1

(
1
t

(
E−m jS j

)
u j

)
u j

 + 2ℑ

 2∑
j=1

D 1
m j

2∑
l=1

Rl j

 u j

 .
We integrate the inequality above in time and use u j = D 1

m j
FU 1

m j
(−t)v j to obtain that

∥FU 1
m

(−t)v∥L∞(R2) ≤ C∥FU 1
m

(−1)v (1, x) ∥L∞(R2)

+C
∫ t

1
τ−1

2∑
j=1

∥
(
E−m jS j

)
u j∥L∞(R2)dτ

+C
∫ t

1

2∑
j=1

2∑
l=1

∥Rl j∥L∞(R2)dτ.

(3.2)

Next we estimate
∑2

j=1 ∥
(
E−m jS j

)
u j∥L∞(R2) and

∑2
j=1

∑2
l=1 ∥Rl j∥L∞(R2).

Lemma 3.1. We have

∥
(
E−mS

)
u∥L∞(R2) :=

2∑
j=1

∥
(
E−m jS j

)
u j∥L∞(R2) ≤ Ct−θ∥U 1

m
(−t)v∥

Ḣ0,α(R2)∩Ḣ0,β(R2)

for t ≥ 1, where 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ, ∥U 1
m

(−t)v∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

:=∑2
j=1 ∥U 1

m j
(−t)v j∥

Ḣ0,α(R2)∩Ḣ0,β(R2)
.

Proof. By the definitions of S j and u j, Lemma 2.1 and the assumption (H3), we obtain

∥

(
E−m j D 1

m j
FU 1

m j
(−t)W j

) (
D 1

m j
FU 1

m j
(−t)v j

)
∥L∞(R2)

≤ ∥FU 1
m j

(−t)W j∥L∞(R2)∥FU 1
m j

(−t)v j∥L∞(R2)

≤ C∥U 1
m

(−t)W∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

∥U 1
m

(−t)v∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

≤ Ct−θ∥U 1
m

(−t)v∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

,

where 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ. Thus we have the desired result. □

Lemma 3.2. We have
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2∑
j=1

2∑
l=1

∥Rl j∥L∞(R2) ≤ Ct1−p−µ∥U 1
m

(−t)v∥p
Ḣ0,α(R2)∩Ḣ0,β(R2)

+Ct−1−µ∥U 1
m

(−t)v∥2
Ḣ0,α(R2)∩Ḣ0,β(R2)

+Ct−1−θ∥U 1
m

(−t)v∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

for t ≥ 1, where p ≥ 2, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ, and

∥U 1
m

(−t)v∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

=

2∑
j=1

∥U 1
m j

(−t)v j∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

.

Proof. Let hk, j = −D m j
mk
M−1

mk
FU 1

mk
(−t)vk. By the definition of R1 j, the Cauchy-Schwarz inequality,

Lemmas 2.1–2.3 and the assumption (H3), we have

∥R1 j∥L∞(R2)

≤ Ct1−p−µ∥|x|2µF −1K j(h1, j, h2, j)∥L1(R2) +Ct−1−µ∥|x|2µF −1F j(h1, j, h2, j)∥L1(R2)

+Ct−1−µ
∥∥∥∥∥|x|2µF −1

(
E−

1
m j (M−1

m j
FU 1

m j
(−t)W j)(M−1

m j
FU 1

m j
(−t)v j)

)∥∥∥∥∥
L1(R2)

≤ Ct1−p−µ∥K j(h1, j, h2, j)∥Ḣs1+2µ,0(R2)∩Ḣs2+2µ,0(R2)

+Ct−1−µ∥F j(h1, j, h2, j)∥Ḣs1+2µ,0(R2)∩Ḣs2+2µ,0(R2)

+Ct−1−µ
∥∥∥∥∥(E− 1

m jM−1
m j
FU 1

m j
(−t)W j

) (
M−1

m j
FU 1

m j
(−t)v j

)∥∥∥∥∥
Ḣs1+2µ,0(R2)∩Ḣs2+2µ,0(R2)

≤ Ct1−p−µ∥FM−mU 1
m

(−t)v∥p−1
L∞(R2)∥FM−mU 1

m
(−t)v∥Ḣs1+2µ,0(R2)∩Ḣs2+2µ,0(R2)

+Ct−1−µ∥FM−mU 1
m

(−t)v∥L∞(R2)∥FM−mU 1
m

(−t)v∥Ḣs1+2µ,0(R2)∩Ḣs2+2µ,0(R2)

+Ct−1−µ∥FM−mU 1
m

(−t)W∥L∞(R2)∥FM−mU 1
m

(−t)v∥Ḣs1+2µ,0(R2)∩Ḣs2+2µ,0(R2)

+Ct−1−µ∥FM−mU 1
m

(−t)v∥L∞(R2)∥E−
1
mM−1

m FU 1
m

(−t)W∥Ḣs1+2µ,0(R2)∩Ḣs2+2µ,0(R2)

≤ Ct1−p−µ∥U 1
m

(−t)v∥p−1
Ḣ0,s1 (R2)∩Ḣ0,s2 (R2)

∥U 1
m

(−t)v∥Ḣ0,s1+2µ(R2)∩Ḣ0,s2+2µ(R2)

+Ct−1−µ∥U 1
m

(−t)v∥Ḣ0,s1 (R2)∩Ḣ0,s2 (R2)∥U 1
m

(−t)v∥Ḣ0,s1+2µ(R2)∩Ḣ0,s2+2µ(R2)

+Ct−1−µ−θ∥U 1
m

(−t)v∥
Ḣ0,s1 (R2)∩Ḣ0,s2 (R2)

+Ct−1−µ∥U 1
m

(−t)v∥
Ḣ0,s1+2µ(R2)∩Ḣ0,s2+2µ(R2)

≤ Ct1−p−µ∥U 1
m

(−t)v∥p
Ḣ0,α(R2)∩Ḣ0,β(R2)

+Ct−1−µ∥U 1
m

(−t)v∥2
Ḣ0,α(R2)∩Ḣ0,β(R2)

+Ct−1−θ∥U 1
m

(−t)v∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

for t ≥ 1, where p ≥ 2, 0 < s1 < 1 < s2, s1 = α, s2 + 2µ = β < 2, 0 < θ < µ.
We next consider the estimate ∥R2 j∥L∞(R2). By the definition of R2 j, Lemma 2.1 and the
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assumption (H3), we get

∥R2 j∥L∞(R2) ≤ Ct1−p∥F (M−m − I)U 1
m

(−t)v∥L∞(R2)

×
(
∥FU 1

m
(−t)v∥p−1

L∞(R2) + ∥FM−mU 1
m

(−t)v∥p−1
L∞(R2)

)
+Ct−1∥F (M−m − I)U 1

m
(−t)v∥L∞(R2)

×
(
∥FU 1

m
(−t)v∥L∞(R2) + ∥FM−mU 1

m
(−t)v∥L∞(R2)

)
+Ct−1

(
∥F (M−m)U 1

m
(−t)W∥L∞(R2) + ∥FU 1

m
(−t)W∥L∞(R2)

)
×

(
∥FU 1

m
(−t)v∥L∞(R2) + ∥FM−mU 1

m
(−t)v∥L∞(R2)

)
≤ Ct1−p−µ∥|x|2µU 1

m
(−t)v∥L1(R2)∥U 1

m
(−t)v∥p−1

L1(R2)

+Ct−1−µ∥|x|2µU 1
m

(−t)v∥L1(R2)∥U 1
m

(−t)v∥L1(R2)

+Ct−1∥U 1
m

(−t)W∥L1(R2)∥U 1
m

(−t)v∥L1(R2)

≤ Ct1−p−µ∥U 1
m

(−t)v∥p
Ḣ0,α(R2)∩Ḣ0,β(R2)

+Ct−1−µ∥U 1
m

(−t)v∥2
Ḣ0,α(R2)∩Ḣ0,β(R2)

+Ct−1−θ∥U 1
m

(−t)v∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

,

where p ≥ 2, 0 < µ < 1, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ.
Therefore we obtain

2∑
j=1

2∑
l=1

∥Rl j∥L∞(R2) ≤ Ct1−p−µ∥U 1
m

(−t)v∥p
Ḣ0,α(R2)∩Ḣ0,β(R2)

+Ct−1−µ∥U 1
m

(−t)v∥2
Ḣ0,α(R2)∩Ḣ0,β(R2)

+Ct−1−θ∥U 1
m

(−t)v∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

,

where p ≥ 2, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ. □

By Lemmas 3.1 and 3.2, we have from (3.2)

∥FU 1
m

(−t)v∥L∞(R2) ≤ C∥FU 1
m

(−1)v(1, x)∥L∞(R2) +C
∫ t

1
τ1−p−µ∥U 1

m
(−τ)v∥p

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

+C
∫ t

1
τ−1−µ∥U 1

m
(−τ)v∥2

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

+C
∫ t

1
τ−1−θ∥U 1

m
(−τ)v∥

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ.

By the Lemma 2.1 and the existence of local solutions of (1.5), we have

∥FU 1
m

(−1)v(1, x)∥L∞(R2) ≤ ∥U 1
m

(−1)v(1, x)∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

≤ ∥U 1
m

(−·)v∥
L∞([0,T ],Ḣ0,α(R2)∩Ḣ0,β(R2))

≤ Cε,

AIMS Mathematics Volume 8, Issue 8, 19656–19676.



19669

where T > 1. Then we obtain

∥FU 1
m

(−t)v∥L∞(R2) ≤ Cε +C
∫ t

1
τ1−p−µ∥U 1

m
(−τ)v∥p

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

+C
∫ t

1
τ−1−µ∥U 1

m
(−τ)v∥2

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

+C
∫ t

1
τ−1−θ∥U 1

m
(−τ)v∥

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ,

(3.3)

where 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ.

Lemma 3.3. Let f ∈ Ḣ0,α(R2) ∩ Ḣ0,β(R2). Then we get

∥ f ∥L∞(R2) ≤Ct−1∥FU 1
m

(−t) f ∥L∞(R2)

+Ct−1−µ∥U 1
m

(−t) f ∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

for t ≥ 1, where 0 < α < 1 < 1 + 2µ < β.
Similar to the proof of Lemma 3.2, we obtain Lemma 3.3. We omit the proof of Lemma 3.3 here.

By Lemmas 2.2 and 3.3, the assumptions (H2) and (H3), we have the following lemma.

Lemma 3.4. We have

∥U 1
m

(−t)v∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

≤ Cε +C
∫ t

1
τ1−p∥FU 1

m
(−τ)v∥p−1

L∞(R2)∥U 1
m

(−τ)v∥Ḣ0,α(R2)∩Ḣ0,β(R2)dτ

+C
∫ t

1
τ(−1−µ)(p−1)∥U 1

m
(−τ)v∥p

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

+C
∫ t

1
τ−1∥FU 1

m
(−τ)v∥L∞(R2)∥U 1

m
(−τ)v∥Ḣ0,α(R2)∩Ḣ0,β(R2)dτ

+C
∫ t

1
τ−1−µ∥U 1

m
(−τ)v∥2

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ +C

∫ t

1
τ−1−θ∥U 1

m
(−τ)v∥

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

for any t ∈ [1,T ], where p ≥ 2, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ.

Proof. Let us consider the integral equation of (1.5) which is written as

v j(t) =U 1
m j

(t)U 1
m j

(−1)v j(1) − i
∫ t

1
U 1

m j
(t − τ)G j(v1, v2) + U 1

m j
(t − τ)

(
W jv j

)
dτ. (3.4)
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Multiplying both sides of (3.4) by |J 1
m j
|s(t) = U 1

m j
(t)|x|sU 1

m j
(−t), s = α or β, by Lemma 2.2 we have

∥U 1
m j

(−t)v∥Ḣ0,s(R2) ≤ ∥U 1
m j

(−1)v j(1)∥Ḣ0,s(R2) +

2∑
j=1

∫ t

1
∥U 1

m j
(−τ)G j(v1, v2)∥Ḣ0,s(R2)dτ

+C
2∑

j=1

∫ t

1
∥U 1

m j
(−τ)(W jv j)∥Ḣ0,s(R2)dτ

≤ ∥U 1
m j

(−1)v j(1)∥Ḣ0,s(R2) +C
∫ t

1
∥v∥p−1

L∞(R2)∥U 1
m

(−τ)v∥Ḣ0,s(R2)dτ

+C
∫ t

1
∥v∥L∞(R2)∥U 1

m
(−τ)v∥Ḣ0,s(R2)dτ

+C
∫ t

1
∥W∥L∞(R2)∥U 1

m
(−τ)v∥Ḣ0,s(R2)dτ

+C
∫ t

1
∥v∥L∞(R2)∥U 1

m
(−τ)W∥Ḣ0,s(R2)dτ

for j = 1, 2.
By Lemma 3.3, (1.13) in Remark 1.1, the assumption (H3), we obtain

∥U 1
m

(−t)v∥Ḣ0,s(R2) ≤ Cε +C
∫ t

1
τ1−p∥FU 1

m
(−τ)v∥p−1

L∞(R2)∥U 1
m

(−τ)v∥Ḣ0,s(R2)dτ

+C
∫ t

1
τ(−1−µ)(p−1)∥U 1

m
(−τ)v∥p

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

+C
∫ t

1
τ−1∥FU 1

m
(−τ)v∥L∞(R2)∥U 1

m
(−τ)v∥Ḣ0,s(R2)dτ

+C
∫ t

1
τ−1−µ∥U 1

m
(−τ)v∥2

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

+C
∫ t

1
τ−β∥U 1

m
(−τ)v∥Ḣ0,s(R2)dτ

+C
∫ t

1
τ−1−θ∥FU 1

m
(−τ)v∥L∞(R2)dτ

+C
∫ t

1
τ−1−θ−µ∥U 1

m
(−τ)v∥

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

≤ Cε +C
∫ t

1
τ1−p∥FU 1

m
(−τ)v∥p−1

L∞(R2)∥U 1
m

(−τ)v∥Ḣ0,s(R2)dτ

+C
∫ t

1
τ(−1−µ)(p−1)∥U 1

m
(−τ)v∥p

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ

+C
∫ t

1
τ−1∥FU 1

m
(−τ)v∥L∞(R2)∥U 1

m
(−τ)v∥Ḣ0,s(R2)dτ

+C
∫ t

1
τ−1−µ∥U 1

m
(−τ)v∥2

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ
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+C
∫ t

1
τ−1−θ∥U 1

m
(−τ)v∥

Ḣ0,α(R2)∩Ḣ0,β(R2)
dτ,

where s = α or β, p ≥ 2, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ. This completes the proof of the
lemma. □

Lemma 3.5. There exists a small δ > 0 such that

t−δ∥U 1
m

(−t)v∥Ḣ0,α(R2)∩Ḣ0,β(R2) + ∥FU 1
m

(−t)v∥L∞(R2) < ε
1
2

for any t ∈ [1,T ], where p ≥ 2, ε
1
2 < δ < min{θ, µp }, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ.

Proof. Let
H(t) = ∥U 1

m
(−τ)v∥Ḣ0,α(R2)∩Ḣ0,β(R2),

K(t) = ∥FU 1
m

(−t)v∥L∞(R2),

H̃(t) = t−δH(t).

By (3.3), Lemma 3.4, we get

K(t) ≤ Cε +C
∫ t

1
τ1−p−µH(τ)pdτ +C

∫ t

1
τ−1−µH(τ)2dτ +C

∫ t

1
τ−1−θH(τ)dτ,

H(t) ≤ Cε +C
∫ t

1
τ1−pK(τ)p−1H(τ) + τ(−1−µ)(p−1)H(τ)pdτ

+C
∫ t

1
τ−1K(τ)H(τ) + τ−1−µH(τ)2dτ +C

∫ t

1
τ−1−θH(τ)dτ.

Then we have

K(t) ≤ Cε +C
∫ t

1
τ1−p−µ+pδH̃(τ)

p
dτ +C

∫ t

1
τ−1−µ+2δH̃(τ)

2
dτ

+C
∫ t

1
τ−1−θ+δH̃(τ)dτ,

(3.5)

d
dt

H(t) ≤ Ct1−pK(t)p−1H(t) +Ct(−1−µ)(p−1)H(t)p

+Ct−1K(t)H(t) +Ct−1−µH(t)2 +Ct−1−θH(t).
(3.6)

Since
d
dt

H̃(t) = t−δ
d
dt

H(t) − δt−δ−1H(t),

then from (3.6) we obtain

d
dt

H̃(t) + δt−1H̃(t) ≤ Ct1−pK(t)p−1H̃(t) +Ct(−1−µ+δ)(p−1)H̃(t)
p

+Ct−1K(t)H̃(t) +Ct−1−µ+δH̃(t)
2
+Ct−1−θH̃(t).
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Thus we get

H̃(t) + δ
∫ t

1
τ−1H̃(τ)dτ ≤ Cε +C

∫ t

1
τ1−pK(τ)p−1H̃(τ)dτ

+C
∫ t

1
Cτ(−1−µ+δ)(p−1)H̃(τ)

p
dτ +C

∫ t

1
τ−1K(τ)H̃(τ)dτ

+C
∫ t

1
τ−1−µ+δH̃(τ)

2
dτ +C

∫ t

1
τ−1−θH̃(τ)dτ.

(3.7)

If we assume that there exists a time t ∈ [1,T ] such that K(t) + H̃(t) ≤ ε
1
2 , then by (3.7), we have

H̃(t) + δ
∫ t

1
τ−1H̃(τ)dτ ≤ C

(
ε + ε

p
2
)
+Cε

1
2

∫ t

1
τ−1H̃(τ)dτ +C

∫ t

1
τ−1−θH̃(τ)dτ

≤ Cε +Cε
1
2

∫ t

1
τ−1H̃(τ)dτ +C

∫ t

1
τ−1−θH̃(τ)dτ,

where ε
1
2 < δ < µ, p ≥ 2. By Gronwall’s inequality, we have

H̃(t) ≤ Cε · eC
∫ t

1 τ
−1−θdτ

≤ C4ε,

where C4 = CeC
∫ t

1 τ
−1−θdτ. Therefore if we choose ε > 0 small enough, from (3.5) we get

K(t) ≤ Cε +Cεp
∫ t

1
τ1−p−µ+pδdτ +Cε2

∫ t

1
τ−1−µ+2δdτ

+Cε
∫ t

1
τ−1−θ+δdτ

≤ C
(
ε + εp + ε2

)
≤ Cε,

where p ≥ 2, 0 < δ < min{ µp , θ}, 0 < θ < µ.
Thus we have

H̃(t) + K(t) ≤ Cε < ε
1
2 .

This contradicts the assumption that there exists a time t ∈ [1,T ] such that K(t) + H̃(t) ≤ ε
1
2 . This

completes the proof of the lemma. □

3.2. Time decay estimates of the global solutions

By Lemma 3.5, we have global existence of solutions to the Cauchy problem (1.5). By Lemmas 3.3
and 3.5, we have

∥v j∥L∞(R2) ≤ Ct−1∥FU 1
m j

(−t)v j∥L∞(R2) +Ct−1−µ∥U 1
m j

(−t)v j∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

≤ Ct−1ε
1
2 +Ct−1−µ+δε

1
2

≤ Ct−1ε
1
2 .
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Therefore we get the time decay estimate (1.10)

∥v∥L∞(R2) =

2∑
j=1

∥v j∥L∞(R2) ≤ Ct−1ε
1
2

for t ≥ 1.
We are now in the position of proving the delicate decay estimates of solutions to (1.5). From (3.1),

we have

∂t

2∑
j=1

|u j|
2 =

2
tp−1ℑ

2∑
j=1

(λ j|u j|
p+1

) + 2ℑ

 2∑
j=1

(
1
t

(
E−m jS j

)
u j

)
u j


+ 2ℑ

 2∑
j=1

D 1
m j

2∑
l=1

Rl j

 u j

 ,
(3.8)

where u j = D 1
m j
FU 1

m j
(−t)v j for j = 1, 2. Let |u| =

(∑2
j=1 |u j|

2
) 1

2 . We can get positive constants λ∗, λ∗

such that

−λ∗|u|p+1 ≤

2∑
j=1

ℑλ j|u j|
p+1 ≤ −λ∗|u|p+1. (3.9)

By Lemmas 3.1, 3.2, 3.5, (3.8) and (3.9), we obtain

∂t|u|2 ≤ −
2λ∗

tp−1 |u|
p+1 +Ct−1−θ+δε (3.10)

for t ≥ 1, where ε
1
2 < δ < min{θ, µp , µ − θ,

p+µ−2−θ
p−1 }, p ≥ 2, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ.

Let us consider the case of p = 2. Multiplying both sides of (3.10) by (log t)3, we have

∂t

(
(log t)3|u|2

)
≤

3
t
(log t)2|u|2 −

2λ∗

t
(log t)3|u|3 +Ct−1−θ+δ(log t)3ε

for t ≥ 1. By Young’s inequality, we obtain:

3
t
(log t)2|u|2 ≤

2λ∗

t
(log t)3|u|3 +

1
λ∗2

1
t

for t ≥ 1. Thus we have

∂t

(
(log t)3|u|2

)
≤

1
λ∗2

1
t
+Ct−1−θ+δ(log t)3ε,

for t ≥ 1, where ε
1
2 < δ < min{θ, µ2 , µ − θ}, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ.

Integrating the above inequality in time, we have

|u| ≤ C(log t)−1 (3.11)

for t ≥ 2.
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By Lemmas 3.3, 3.5 and (3.11), we have

∥v j∥L∞(R2) ≤ Ct−1∥FU 1
m j

(−t)v j∥L∞(R2)

+Ct−1−µ∥U 1
m j

(−t)v j∥
Ḣ0,α(R2)∩Ḣ0,β(R2)

≤ Ct−1(log t)−1 +Ct−1−µ+δε
1
2

≤ Ct−1(log t)−1

(3.12)

for t ≥ 2, where ε
1
2 < δ < min{θ, µ2 , µ − θ}, 0 < α < 1 < 1 + 2µ < β < 2, 0 < θ < µ. Therefore, we get

the desired time decay estimate (1.11).
From (3.4) , we have

v j(t) = U 1
m j

(t)
(
U 1

m j
(−1)ϕ j − i

∫ t

1
U 1

m j
(−τ)G j(v1, v2) + U 1

m j
(−τ)

(
W jv j

)
dτ

)
.

Let v j+ = U 1
m j

(−1)ϕ j − i
∫ ∞

1
U 1

m j
(−τ)G j(v1, v2) + U 1

m j
(−τ)

(
W jv j

)
dτ. Then we have

v j(t) = U 1
m j

(t)v j+ + i
∫ ∞

t
U 1

m j
(t − τ)G j(v1, v2) + U 1

m j
(t − τ)

(
W jv j

)
dτ.

We can also obtain the scattering lim
t→+∞
∥U 1

m j
(−t)v(t) − v+∥Ḣ0,α(R2)∩Ḣ0,β(R2) = 0 from the time decay

estimate (1.10), where 0 < α < 1 < β < 2.
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