Research article

Improved the bias in kernel quantile function estimation

  • Received: 11 July 2022 Revised: 19 September 2022 Accepted: 28 September 2022 Published: 24 October 2022
  • MSC : 62G05, 62G20

  • In this paper, a new estimator for kernel quantile estimation is given to reduce the bias. The asymptotic properties of the proposed estimator was established and it turned out that the bias has been reduced to the fourth power of the bandwidth, while the bias of the estimators considered has the second power of the bandwidth, while the variance remains at the same order. Futhermore, we calculate the optimal bandwidth which minimizes the asymptotic mean squared error. A simulation study and a real data example are carried out to illustrate the performance of the proposed estimator and compared with other existing approaches mentioned.

    Citation: Abdallah Sayah, Nassima Almi. Improved the bias in kernel quantile function estimation[J]. AIMS Mathematics, 2023, 8(1): 1784-1799. doi: 10.3934/math.2023092

    Related Papers:

  • In this paper, a new estimator for kernel quantile estimation is given to reduce the bias. The asymptotic properties of the proposed estimator was established and it turned out that the bias has been reduced to the fourth power of the bandwidth, while the bias of the estimators considered has the second power of the bandwidth, while the variance remains at the same order. Futhermore, we calculate the optimal bandwidth which minimizes the asymptotic mean squared error. A simulation study and a real data example are carried out to illustrate the performance of the proposed estimator and compared with other existing approaches mentioned.



    加载中


    [1] M. Falk, Relative efficiency and deficiency of kernel type estimators of smooth distribution functions, Stat. Neerl., 37 (1983), 73–83. https://doi.org/10.1111/j.1467-9574.1983.tb00802.x doi: 10.1111/j.1467-9574.1983.tb00802.x
    [2] E. Parzen, Nonparametric statistical data modelling, J. Am. Stat. Assoc., 74 (1979), 105–121. https://doi.org/10.1080/01621459.1979.10481621 doi: 10.1080/01621459.1979.10481621
    [3] A. Azzalini, A note on the estimation of a distribution function and quantiles by a kernel method, Biometrika, 68 (1981), 326–328. https://doi.org/10.1093/biomet/68.1.326 doi: 10.1093/biomet/68.1.326
    [4] J. Galambos, The asymptotic theory of extreme order statistics, In: The theory and applications of reliability with emphasis on bayesian and nonparametric methods, New York: Academic Press, 1977,151–164. https://doi.org/10.1016/B978-0-12-702101-0.50014-7
    [5] H. A. David, H. N. Nagaraja, Order statistics, 3 Eds., New York: Wiley, 2003. https://doi.org/10.1002/0471722162
    [6] H. Yamato, Uniform convergence of an estimator of a distribution function, Bull. Math. Stat., 15 (1973), 69–78. https://doi.org/10.5109/13073 doi: 10.5109/13073
    [7] R. D. Reiss, Nonparametric estimation of smooth distribution functions, Scand. J. Statist., 8 (1981), 116–119. https://www.jstor.org/stable/4615820
    [8] E. A. Nadaraya, Some new estimates for distribution functions, Theor. Probab. Appl., 9 (1964), 497–500. https://doi.org/10.1137/1109069 doi: 10.1137/1109069
    [9] S. S. Ralescu, S. Sun, Necessary and sufficient conditions for the asymptotic normality of perturbed sample quantiles, J. Stat. Plan. Infer., 35 (1993), 55–64. https://doi.org/10.1016/0378-3758(93)90067-G doi: 10.1016/0378-3758(93)90067-G
    [10] S. S. Yang, A smooth nonparametric estimator of a quantile function, J. Am. Stat. Assoc., 80 (1985), 1004–1011. https://doi.org/10.2307/2288567 doi: 10.2307/2288567
    [11] S. J. Sheater, J. S. Marron, Kernel quatile estimtors, J. Am. Stat. Assoc., 85 (1990), 410–416. https://doi.org/10.1080/01621459.1990.10476214 doi: 10.1080/01621459.1990.10476214
    [12] E. Choi, P. Hall, On bias reduction in local linear smoothing, Biometrika, 85 (1998), 333–345. https://doi.org/10.1093/biomet/85.2.333 doi: 10.1093/biomet/85.2.333
    [13] M. Y. Cheng, E. Choi, J. Q. Fan, P. Hall, Skewing methods for two-parameter locally parametric density estimation, Bernoulli, 6 (2000), 169–182. https://doi.org/10.2307/3318637 doi: 10.2307/3318637
    [14] C. Kim, W. Kim, B. U. Park, Skewing and generalized jackknifing in kernel density estimation, Commun. Stat. Theor. M., 32 (2003), 2153–2162. https://doi.org/10.1081/STA-120024473 doi: 10.1081/STA-120024473
    [15] Q. X. Bi, W. H. Gui, Bayesian and classical estimation of stress-strength reliability for inverse Weibull lifetime models, Algorithms, 10 (2017), 71. https://doi.org/10.3390/a10020071 doi: 10.3390/a10020071
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1324) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog