Research article Special Issues

New extension to fuzzy dynamic system and fuzzy fixed point results with an application

  • Received: 19 August 2022 Revised: 24 September 2022 Accepted: 03 October 2022 Published: 18 October 2022
  • MSC : 46T99, 47H10, 54H25

  • In this paper we introduce the notion of fuzzy dynamic system in $ b $ -metric-like space. By applying this, discuss some new refinements of the $ F $-fuzzy Suzuki-type fixed point results for the fuzzy operators are presented. Also, establish the concept fuzzy dynamic system instead of the Piscard iterative sequence, which improves the existing results for such analysis as those presented here. Includes some tangible instances and an application are given to highlight the usability and validity of the theoretical results.

    Citation: Amjad Ali, Eskandar Ameer, Suhad Subhi Aiadi, Muhammad Tariq, Muhammad Arshad, Nabil Mlaiki, Wasfi Shatanawi. New extension to fuzzy dynamic system and fuzzy fixed point results with an application[J]. AIMS Mathematics, 2023, 8(1): 1208-1229. doi: 10.3934/math.2023061

    Related Papers:

  • In this paper we introduce the notion of fuzzy dynamic system in $ b $ -metric-like space. By applying this, discuss some new refinements of the $ F $-fuzzy Suzuki-type fixed point results for the fuzzy operators are presented. Also, establish the concept fuzzy dynamic system instead of the Piscard iterative sequence, which improves the existing results for such analysis as those presented here. Includes some tangible instances and an application are given to highlight the usability and validity of the theoretical results.



    加载中


    [1] M. Abbas, B. Damjanović, R. Lazović, Fuzzy common fixed point theorems for generalized contractive mappings, Appl. Math. Lett., 23 (2010), 1326–1330. https://doi.org/10.1016/j.aml.2010.06.023 doi: 10.1016/j.aml.2010.06.023
    [2] M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and couplete fixed point theorems on $b$-metric-like spaces, J. Inequal. Appl., 2013 (2013), 402. https://doi.org/10.1186/1029-242X-2013-402 doi: 10.1186/1029-242X-2013-402
    [3] A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Phys. A: Stat. Mech. Appl., 538 (2020), 122669. https://doi.org/10.1016/j.physa.2019.122669 doi: 10.1016/j.physa.2019.122669
    [4] S. Atailia, N. Redjel, A. Dehici, Some fixed point results for $(c)$-mappings in Banach spaces, J. Fixed Point Theory Appl., 22 (2020), 51. https://doi.org/10.1007/s11784-020-00787-4 doi: 10.1007/s11784-020-00787-4
    [5] A. Azam, Fuzzy fixed points of fuzzy mappings via a rational inequality, Hacet. J. Math. Stat., 40 (2011), 421–431. https://doi.org/10.1016/j.physa.2019.122669 doi: 10.1016/j.physa.2019.122669
    [6] A. Azam, M. Arshad, P. Vetro, On a pair of fuzzy $\phi$-contractive mappings, Math. Comput. Model., 52 (2010), 207–214. https://doi.org/10.1016/j.mcm.2010.02.010 doi: 10.1016/j.mcm.2010.02.010
    [7] J. P. Aubin, I. Ekeland, Applied nonlinear analysis, John Wiley Sons Wiley, 1984.
    [8] J. P. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Am. Math. Soc., 78 (1980), 391–398. https://doi.org/10.2307/2042331 doi: 10.2307/2042331
    [9] A. Ali, A. Hussain, M. Arshad, H. A. Sulami, M. Tariq, Certain new development to the orthogonal binary relations, Symmetry, 14 (2022), 1954. https://doi.org/10.3390/sym14101954 doi: 10.3390/sym14101954
    [10] A. Ali, A. Muhammad, A. Hussain, N. Hussain, S. M. Alsulami, On new generalized $\theta_{b}$-contractions and related fixed point theorems, J. Inequal. Appl., 2022 (2022), 37. https://doi.org/10.1186/s13660-022-02770-8 doi: 10.1186/s13660-022-02770-8
    [11] R. Bellman, E. S. Lee, Functional equations in dynamic programming, Aequat. Math., 17 (1978), 1–18. https://doi.org/10.1007/BF01818535 doi: 10.1007/BF01818535
    [12] M. Cosentino, P. Vetro, Fixed point results for $F$-contractive mappings of Hardy-Rogers-type, Filomat, 28 (2014), 715–722. https://doi.org/10.2298/FIL1404715C doi: 10.2298/FIL1404715C
    [13] Y. J. Cho, M. Jleli, M. Mursaleen, B. Samet, C. Vetro, Advances in metric fixed point theory and applications, Singapore Springer Nature, 2021. https://doi.org/10.1007/978-981-33-6647-3
    [14] D. Derouiche, H. Ramoul, New fixed point results for $F$-contractions of Hardy-Rogers type in $b$-metric spaces with applications, J. Fixed Point Theory Appl., 22 (2020), 1–44. https://doi.org/10.1007/s11784-020-00822-4 doi: 10.1007/s11784-020-00822-4
    [15] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Springer Verlag, 2021. https://doi.org/10.1007/978-981-16-4896-0
    [16] N. Hussain, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed points of contractive mappings in $b$-metric-like spaces, Sci. World J., 2014 (2014), 471827. https://doi.org/10.1155/2014/471827 doi: 10.1155/2014/471827
    [17] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. Theory Methods Appl., 69 (2008), 2942–2949. https://doi.org/10.1016/j.na.2007.08.064 doi: 10.1016/j.na.2007.08.064
    [18] D. Klim, D. Wardowski, Fixed points of dynamic processes of set-valued $F$-contractions and application to functional equations, Fixed Point Theory Appl., 2015 (2015), 22. https://doi.org/10.1186/s13663-015-0272-y doi: 10.1186/s13663-015-0272-y
    [19] R. Kruse, K. D. Meyer, Statistics with vague data, Reidel, 1987. https://doi.org/10.1007/978-94-009-3943-1
    [20] V. Lakshmikantham, R. Mohapatra, Theory of fuzzy differential equations and inclusions, CRC Press, 2003. https://doi.org/10.1201/9780203011386
    [21] S. G. Matthews, Partial metric topology, in proceedings of the 11th summer conference on general topology an applications, Ann. New York Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [22] S. B. J. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/PJM.1969.30.475 doi: 10.2140/PJM.1969.30.475
    [23] H. K. Nashine, C. Vetro, W. Kumam, P. Kumam, Fixed point theorems for fuzzy mappings and applications to ordinary fuzzy differential equations, Adv. Differ. Equ., 2014 (2014), 232. https://doi.org/10.1186/1687-1847-2014-232 doi: 10.1186/1687-1847-2014-232
    [24] N. Onjai-Uea, P. Kumam, A generalized nonlinear random equations with random fuzzy mappings in uniformly smooth Banach spaces, J. Inequal. Appl., 2010 (2010), 728452. https://doi.org/10.1155/2010/728452 doi: 10.1155/2010/728452
    [25] R. A. Rashwan, M. A. Ahmed, Common fixed point theorems for fuzzy mappings, Arch. Math., 38 (2002), 219–226.
    [26] M. Sgroi, C. Vetro, Multi-valued $F$-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. https://doi.org/10.2298/FIL1307259S doi: 10.2298/FIL1307259S
    [27] H. M. Srivastava, A. Ali, A. Hussain, M. Arshad, H. A. Sulami, A certain class of $\theta_{L}$-type non-linear operatorsand some related fixed point results, J. Nonlinear Var. Anal., 6 (2022), 69–87. https://doi.org/10.23952/jnva.6.2022.1.05 doi: 10.23952/jnva.6.2022.1.05
    [28] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory Methods Appl., 71 (2009), 5313–5317. https://doi.org/10.1016/j.na.2009.04.017 doi: 10.1016/j.na.2009.04.017
    [29] D. Turkoglu, B. E. Rhoades, A fixed fuzzy point for fuzzy mapping in complete metric spaces, Math. Commun., 10 (2005), 115–121.
    [30] V. Todorcevic, Harmonic quasiconformal mappings and hyperbolic type metrics, Cham Springer International, 2019. https://doi.org/10.1007/978-3-030-22591-9
    [31] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
    [32] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1239) PDF downloads(89) Cited by(3)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog