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1. Introduction

Dynamic process is a mightful formalistic apparatus for association with a large spectrum analysis
of multistage decision making problems. Such problems appear and are congruent in essentially all
human activities. Unfavourably, for explicit reasons, the analysis of fuzzy dynamic process is difficult.
Fuzzy dynamic process are characteristic of all dynamic process where the variables associated are
state and decision variables. Fuzzy dynamic iterative process is established as a process getting
preprocessed inputs and having outputs that are furthermore defuzzified for realistic applications.
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In the light of epistemic access, the term fuzzy sets appear as descriptions or perceptions of
nonexistent underlying crisp values. As an example, it is noted that the temperature was high form but
the numerical value is uncharted. This leads the way, to a number of classical problems which usually
provide themselves to fuzzification fashions like Zadeh’s generalization theorem [19].

In functional analysis, the field Banach fixed point theory originate as an imperative apparatus over
the last some decades in non-linear sciences and engineering via behavioral science, economics, etc
see ( [4, 6–8, 11, 12, 14, 16, 20, 21, 23–26, 29, 31]). To be unequivocal, while codifying an experiment
mathematically, many number of researchers to interrogate the solvability of a functional equation in
terms of differential equations, integral equations, or fractional differential equations. Such as the
existence and uniqueness of a solution are often achieved by finding fixed point of a particular
contraction mapping, (see more [1, 3, 9, 10, 13, 15, 18, 30]). The three major structure in Banach fixed
point theory are metric structure, topological structure, and discrete structure. These idea was extend
by either generalized metric spaces into by modifying the structure of the contraction operators.
However, Nadler [22] display the concept of Hausdorff metric discoursed the Banach fixed point
theory for multi-valued mapping rather than single-valued mappings.

On the other hand, Alghamdi et al. [2] improved the idea of partial metric space to b-metric-like
space. They produced interesting theorems of fixed point in the newly defined frame. Their concept
was expedited by various researchers in many ways (see more [17, 27, 28]).

This article regards fuzzy dynamic process as fuzzy dynamic process on b-metric-like space,
specifically the mapping of set-valued (extended) fuzzy intervals endowed with the b-metric-like.
From that point of view, a natural topic is convergence theorems via fuzzy dynamic process in the
class of b-metric-like space. Our view of convergence theorems in b-metric-like space, then, disposes
of fuzzy dynamic process entirely. Instead, we just adopt the standard setting of fuzzy dynamic
process in b-metric-like space which defines convergence theorems in generalized F -contraction via
expectations of fuzzy Suzuki Hardy Rogers type contraction operators. Subsequently, corollaries are
originated from the main result. To explain the example in the main section, a table and diagram has
been created that best illustrates the Fuzzy dynamic process to the readers. At the end, gives an
application of our results in solving Hukuhara differentiability through the fuzzy initial valued
problem and fuzzy functions. The pivotal role of Hukuhara differentiability in Fuzzy dynamic process
is stated. At last, a summary of the article is described in the conclusion section.

2. Preliminaries

Formally, an fuzzy set is defined as [32]:
A fuzzy set on G is a mapping that assigns every value of G to some element in [0, 1]. The family

of all such mappings is expressed as F(G). For a fuzzy set A on G and µ ∈ G, the value A(µ) is known
as the membership grade of µ in A. The α−level set of A expressed as [A]α is given by{

[A]α = {µ : A (µ) = α}, α ∈ (0, 1] ;
[A]0 = {µ : A (µ) > 0}.

For a nonempty set G and an ms G′, a mapping T : G → F(G′) is a fuzzy mapping and is a fuzzy
subset of G × G′ having the membership function T (g)(g′). T (g)(g′) describes the membership grade
of g′ in T (g), while [T (g)]α states the α−level set of T (g), for more details see [5].
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Definition 2.1. [5] A point g ∈ G is called a fuzzy fixed point of a fuzzy mapping T : G → F(G) if
there is α ∈ (0, 1] such that g ∈ [T (g)]α.

In the recent past, Wardowski [31] provided the term known as F-contraction and implemented on
Banach fixed point theory. Which is the efficient generalization of Banach fixed point theory. Formally,
an F-contraction is defined as follows [31]:

Definition 2.2. Let ∇F is the set of mappig F : R+ −→ R satisfying (Fi) − (Fiii):
(Fi) µ1 < µ2 implies F (µ1) < F (µ2) for all µ1, µ2 ∈ (0,+∞) ;
(Fii) For every sequence {µσ} in R+ such that

lim
σ−→+∞

µσ = 0 if and only if lim
σ−→+∞

F (µσ) = −∞;

(Fiii) There exist k ∈ (0, 1) such that limµ→0()µkF (µ) = 0.
A mapping T : G → G is called an F -contraction on a metric space (G, d), if there is τ ∈ R+/ {0}

such that

d (Tµ1,Tµ2) > 0 ⇒ τ + F (Tµ1,Tµ2) 5 F (d (µ1, µ2)) for each µ1, µ2 ∈ G.

After, we recall the following some basic idea of dynamic system:
Let ξ : G → C(G) be a mapping. A set

Ď (ξ, µ0) =
{
(µa)a≥0 : µa ∈ ξµa−1 for alla ∈ N

}
.

is called dynamic process Ď (ξ, µ0) of µ with starting point µ0. Where µ0 ∈ G be arbitrary and fixed. In
the light of Ď (ξ, µ0) , (µa)a∈N−{0} onward has the form (µa) (see more [18]).

Further, the literature contains many generalizations of the idea of fixed point theory in metric
spaces and its topological behavior. In particularly, Alghamdi et al. [2] designed the fashion of b-
metric-like space as follows:

Definition 2.3. [2] Let G be a b-metric-like space with G , φ and s ≥ 1. A function d : G × G →
R+ ∪ {0} such that for every µ1, µ2, µ3 ∈ G, the following conditions (bi) , (bii) and (biii) hold true:
(bi) the condition: d (µ1, µ2) = 0 implies µ1 = µ2;
(bii) the condition is hold true: d (µ1, µ2) = d (µ2, µ1) ;
(biii) the condition is satisfied: d (µ1, µ3) 5 s[d (µ1, µ2) + d (µ2, µ3)].
The pair (G , d) is known as a b-metric-like space.

Example 2.4. Define (G, d) with s = 2 by

d(0, 0) = 0, d(1, 1) = d(2, 2) = d(0, 2) = 2, d(0, 1) = 4, d(1, 2) = 1,

with
d (µ1, µ2) = d (µ2, µ1) ,

for all µ1, µ2 ∈ G = {0, 1, 2}. Then, (G, d) is a b-metric-like space. Clearly, it is neither a b-metric nor a
metric-like space, see more detail in [2].
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Remark 2.5. Owing to above definition (2.3), every partial metric is a b-metric-like space but converse
may not hold true in general, see more [2]

Nadler [22], design the idea of Hausdorff metric and extended the Banach contraction theorem for
multi-valued operators instead of single-valued operators. Hereinafter, we investigate the concept of
Hausdorff b-metric-like as follows. Let (G, µ) be a b-metric-like space. For µ1 ∈ G and L1 ⊆ G, let
db (µ1, L2) = inf {d (µ1, µ2) : µ2 ∈ L2} . Define Ĥb : CB (G) ×CB (G)→ [0,+∞) by

Ĥb (L1, L2) = max
{

sup
µ1∈L1

db(µ1, L2), sup
µ2∈L2

db(µ1, L1)
}
,

for each L1, L2 ∈ CB (G) . Where CB (G) denote the family of all non-empty closed and bounded-
subsets of G and CL (G) the family of all non-empty closed-subsets of G.

Definition 2.6. [5] Let L1, L2 ∈ V(G), α ∈ (0, 1]. Then dα(L1, L2) = in fg∈L1α,g′∈L2αd(g, g′),

Hα(L1, L2) = Ĥbl(L1α, L2α),

where Ĥbl is the Hausdorff distance.

Lemma 2.7. Let L1 and L2 be nonempty proximal subsets of a b-MLS (G, d). If g ∈ L1, then

d(g, L2) 5 H(L1, L2).

Lemma 2.8. Let (G, d) be a b-metric-like space. For all L1, L2 ∈ CB(G) and for any g ∈ L1 such that
d(g, L2) = d(g, g′), where g′ ∈ L2. Then, Ĥbl (L1, L2) ≥ d (g, g′) .

In the following, the concept of fuzzy dynamic process as a generalization of dynamic process, and
some elementary facts about these concepts are discussed.

3. Fuzzy dynamic process: Ď
([

Tµ
]
α , µ0

)
In this section, first we deal with some new aspects of the fuzzy dynamic process as follows:

Definition 3.1. Let T : G → F(G) be a fuzzy mapping. If there is α ∈ (0, 1], and let µ0 ∈ G be
arbitrary and fixed such that

Ď
([

Tµ
]
α , µ0

)
=

{
(µ j) j∈N∪{0} : µ j ∈

[
Tµ j−1

]
α
, ∀ j ∈ N

}
.

Every membership value of Ď
([

Tµ
]
α , µ0

)
is called a fuzzy dynamic process of T starting point µ0. The

fuzzy dynamic process (µ j) j∈N∪{0} onward is written as
(
µ j

)
.

Example 3.2. Let G = C ([0, 1]) be a Banach space with norm ‖µ‖ = supr∈[0,1] |µ (r)| for µ ∈ G. Let
T : G → F(G) be a fuzzy mapping. If there is α ∈ (0, 1] such that for every µ ∈ G,

[
Tµ

]
α is a set of the

function

δ 7−→ k
∫ δ

0
µ (r) dr, k ∈ [0, 1] ,

that is,

Ď
([

Tµ
]
α (δ) , µ0

)
= {k

∫ δ

0
µ (r) dr : k ∈ [0, 1]}, µ ∈ G,
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and let µ0 (δ) = δ, δ ∈ [0, 1]. Then the iterative sequence

µ j =

{
( 1

j!( j+1)!δ
j+1), j ≥ 0;

0 elsewehere.

is a fuzzy dynamic process of mapping T with starting point µ0. The mapping T : G → F (R) is said to
be Ď

([
Tµ

]
α , µ0

)
fuzzy dynamic lower semi-continuous at µ ∈ G, if for every fuzzy dynamic process

(µ j) ∈ D(T, µ0) and for every subsequence (µ j(i)) of (µ j) convergent to µ[
Tµ

]
α ≤ lim inf

i→+∞

[
Tµ j(i)

]
α
.

In this case, T is fuzzy dynamic lower semi-continuous Ď
([

Tµ
]
α , µ0

)
. If T is fuzzy dynamic lower

semi-continuous Ď
([

Tµ
]
α , µ0

)
at each µ ∈ G, then T is known as lower semi-continuous. For every

sequence (µ j) ⊂ G and µ ∈ G such that (µ j)→ µ, we have
[
Tµ

]
α ≤ lim infi→+∞

[
Tµ ( j)

]
α .

Example 3.3. Let G = R+ ∪ {0}. Define T : G → F (G) by

T (µ)
(
µ′

)
=


1, if 0 ≤ µ′ ≤ µ

4 ;
1
2 , if µ

4 < µ
′ ≤

µ

3 ;
1
4 , if µ

3 < µ
′ ≤

µ

2 ;
0, if µ

2 < µ
′ ≤ 1.

all µ ∈ G, there is α (µ) = 1 such that
[
Tµ

]
α(µ) =

[
0, µ2

]
. Apply the following iterative procedure to

generate a sequence {µn} of fuzzy sets is given by (see Table 1 and Figure 1)

µi =

{
µ0hi−1, if i ≥ 2;
0, elsewhere.

Where µ0 = 2 is intial point and h = 1
2 .

Table 1. Fuzzy dynamic process.

i ≥ 2 µi = µ0gi−1 ∈
[
Tµ

]
α(µ) =

[
0, µ2

]
µi=2 1 −

[
Tµ1

]
α(µ1) = [0, 1]

µi=3
1
2 −

[
Tµ2

]
α(µ2) = [0, 1

2 ]

µi=4
1
4 −

[
Tµ3

]
α(µ3) = [0, 1

4 ]

µi=5
1
8 −

[
Tµ3

]
α(µ4) = [0, 1

8 ]

µi=6
1

16 −
[
Tµ3

]
α(µ5) = [0, 1

16 ]

µi=7
1

32 −
[
Tµ3

]
α(µ6) = [0, 1

32 ]

µi=8
1

64 −
[
Tµ3

]
α(µ7) = [0, 1

64 ]

µi=9
1

128 −
[
Tµ3

]
α(µ8) = [0, 1

128 ]

µi=10
1

256 −
[
Tµ4

]
α(µ9) = [0, 1

256 ]
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Figure 1. Fuzzy dynamic process: Ď
([

Tµ
]
α , µ0

)
.

We obtain,

Ď
([

Tµ
]
α , µ0

)
= {

1
2
,

1
4
,

1
8
,

1
16
,

1
32
,

1
64
,

1
128

,
1

256
}

is a fuzzy dynamic process of T starting at point µ0 = 2.
Further, in the following we develop fuzzy fixed point theorems with respect to fuzzy dynamic

process Ď
([

Tµ
]
α , µ0

)
as follows.

4. Fuzzy fixed point theorems with respect to fuzzy dynamic process: Ď
([

Tµ
]
α , µ0

)
Now, we start with the following main definition:

Definition 4.1. Let (G, d) be a b-metric-like space with s ≥ 1. A mapping T : G → F (G) is called
a F-fuzzy Suzuki-Hardy-Rogers (abbr., F-FSHR) type contraction with respect to Ď

([
Tµ

]
α , µ0

)
and

α : G → (0, 1] such that
[
Tµi

]
α(i) are nonempty closed subsets of G if for some F ∈ ∇z and τ :

(0,+∞)→ (0,+∞) such that

1
2s

db(µi−1,
[
Tµi−1

]
α(i−1)) 5 d (µi−1, µi) ,

we have
τ(U(µi−1, µi)) + F [Ĥb(

[
Tµi

]
α(i) ,

[
Tµi+1

]
α(i+1))] 5 F (U(µi−1, µi)), (4.1)

where

U(µi−1, µi) = e1
[
d (µi−1, µi)

]
+ e2[db(µi−1,

[
Tµi−1

]
α(i−1))] + e3[db(µi,

[
Tµi

]
α(i))]
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+
e4

2s
[db(µi−1,

[
Tµi

]
α(i))] +

e5

2s
[db(µi,

[
Tµi−1

]
α(i−1))],

for all µi ∈ Ď
([

Tµ
]
α , µ0

)
, Ĥb(

[
Tµi

]
α(i) ,

[
Tµi+1

]
α(i+1)) > 0, where e1, e2, e3, e4, e5 ∈ [0, 1] such that

e1 + e2 + e3 + e4 + e5 = 1 and 1 − e3 − e5 > 0.

Remark 4.2. To continue with our results, the behavior of self distance in b-metric-like space is defined
by

d (µ1, µ1) ≤ 2d (µ1, µ2) .

Additionally, we assume that µi ∈ Ď
([

Tµ
]
α , µ0

)
satisfying fuzzy dynamic process for below condition:

db(µi,
[
Tµi

]
)α(i) > 0, db(µi−1,

[
Tµi−1

]
α(i−1)) > 0, (4.2)

for all i ∈ N. If for the investigated process that does not satisfy (4.2), there is some i0 ∈ N such that

db(µi0 ,
[
Tµi0

]
α(i0)) > 0,

and
db(µi0−1 ,

[
Tµi0−1

]
α(i0−1)) = 0,

then we get µi0−1 = µi0 ∈
[
Tµi0−1

]
α(i0−1) which implies the existence of fuzzy fixed point. In the light

of this consideration, fuzzy dynamic process satisfying (4.2) does not depreciate a generality of our
analysis.

Now, we proceed to our main result:

Theorem 4.3. Let (G, d, s) be a complete b-metric-like space. Let T : G → µα(G) be an F-FSHR type
contraction with respect to µi. Assume that the following holds:
(i) There is a fuzzy dynamic iterative process µi ∈ Ď

([
Tµ

]
α , µ0

)
such that for each l ≥ 0

lim infk→l+ τ (k) > 0;
(ii) A mapping G 3 µi 7−→ db(µi,

[
Tµi

]
α(i)) is fuzzy dynamic lower semi-continuous Ď

([
Tµ

]
α , µ0

)
;

(iii) If, in addition, F is super-additive, i.e., for µ1, µ2, ξ1, ξ2 ∈ R+ we have

F (ξ1µ1 + ξ2µ2) ≤ ξ2F(µ1) + ξ2F(µ2).

Then T has a fuzzy fixed point.

Proof. Choose an arbitrary point µ0 ∈ G. In veiw of fuzzy dynamic iterative process, we have

Ď
([

Tµ
]
α , µ0

)
= {(µi)i∈N∪{0} : µi+1 = µi ∈

[
Tµi−1

]
α(i−1) for all i ∈ N}.

In case that there is i0 ∈ N such that µi0 = µi0+1 , then our proof of Theorem (4.3) go ahead as follows.
If we let µi , µi+1 for all i ∈ N, then we have

1
2s

db(µi,
[
Tµi

]
α(i)) ≤ d (µi, µi+1) , for all i ∈ N. (4.3)

From (4.1) and in the light of Lemma (2.8), we have

F (d(µi+1, µi+2) ≤ F [Ĥb(
[
Tµi

]
α(i) ,

[
Tµi+1

]
α(i+1))] (4.4)
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≤ F
[
e1d (µi, µi+1) + e2db

(
µi,

[
Tµi

]
α(i)

)
+ e3db

(
µi+1,

[
Tµi+1

]
α(i+1)

)
+

e4

2s
db

(
µi,

[
Tµi+1

]
α(i+1)

)
+

e5

2s
db

(
µi+1,

[
Tµi

]
α(i)

)]
−τ

[
e1d (µi, µi+1) + e2db

(
µi,

[
Tµi

]
α(i)

)
+ e3db

(
µi+1,

[
Tµi+1

]
α(i+1)

)
+

e4

2s
db

(
µi,

[
Tµi+1

]
α(i+1)

)
+

e5

2s
db

(
µi+1,

[
Tµi

]
α(i)

)]
.

Now, we survey to the following inequality

db(µi+1,
[
Tµi+1

]
α(i+1)) < db

(
µi,

[
Tµi

]
α(i)

)
, (4.5)

for all i ∈ N. Suppose, on the contrary, there is i0 ∈ N such that
d(µi0+1,

[
Tµi0+1

]
α(i0+1)) ≥ d(µi0 ,

[
Tµi0

]
α(i0)). By (4.4) and Lemma (2.8), we have

F
[
db(µi0+1,

[
Tµi0+1

]
α(i0+1))

]
= F

[
d(µi0+1, µi0+2)

]
(4.6)

≤ F
[
Ĥb

([
T

(
µi0

)]
α(i0) ,

[
T

(
µi0+1

)]
α(i0+1)

)]
− τ

(
U(µi0 , µi0+1)

)
≤ F

[
e1

(
db

(
µi0 ,

[
T

(
µi0

)]
α(i0)

))
+ e2

(
db

(
µi0 ,

[
T

(
µi0

)]
α(i0)

))
+e3

(
db

(
µi0+1,

[
T

(
µi0+1

)]
α(i0+1)

))
+

e4

2s

(
db

(
µi0 ,

[
T

(
µi0+1

)]
α(i0+1)

))
+

e5

2s

(
db

(
µi0+1,

[
T

(
µi0

)]
α(i0)

))]
− τ

(
U(µi0 , µi0+1)

)
≤ F

[
e1db

(
µi0 ,

[
T

(
µi0

)]
α(i0)

)
+ e2

(
db

(
µi0 ,

[
T

(
µi0

)]
α(i0)

))
+e3

(
db

(
µi0+1,

[
T

(
µi0+1

)]
α(i0+1)

))
+

se4

2s
db

(
µi0 ,

[
T

(
µi0

)]
α(i0)

)
+

se4

2s
db

([
T

(
µi0

)]
α(i0) ,

[
T

(
µi0+1

)]
α(i0+1)

)
+

2se5

2s

(
db(µi0 ,

[
T

(
µi0

)]
α(i0)

)]
−τ

(
U(µi0 , µi0+1)

)
.

Owing to the above hypothesis, this, in turn, yields:

F
[
db(µi0+1,

[
Tµi0+1

]
α(i0+1))

]
≤ F

[
e1db

(
µi0 ,

[
T

(
µi0

)]
α(i0)

)
+ e2

(
db

(
µi0 ,

[
T

(
µi0

)]
α(i0)

))
+e3

(
db

(
µi0+1,

[
T

(
µi0+1

)]
α(i0+1)

))
+e4

(
db

([
T

(
µi0

)]
α(i0) ,

[
T

(
µi0+1

)]
α(i0+1)

))
+e5

(
db

(
µi0 ,

[
T

(
µi0

)]
α(i0)

))]
− τ

(
U(µi0 , µi0+1)

)
.

Since F is super-additive, we can write

F
[
db(µi0+1,

[
Tµi0+1

]
α(i0+1))

]
≤

(e1 + e2 + e5)
(1 − e3 − e4)

F
[
db(µi0 ,

[
Tµi0

]
α(i0))

]
−
τ
(
U(µi0−1, µi0)

)
(1 − e3 − e4)

.
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From this, By given condition e1 + e2 + e3 + e4 + e5 = 1, we have

F
[
db(µi0+1,

[
Tµi0+1

]
α(i0+1))

]
≤ F

[
db(µi0 ,

[
Tµi0

]
α(i0))

]
−
τ
(
U(µi0−1, µi0)

)
(1 − e3 − e4)

, (4.7)

a contradiction. Hence (4.5) holds true. In the light of above hypothesis,Therefore db

(
µi,

[
Tµi

]
α(i)

)
is a

decreasing sequence with respect to real number and it is bounded from below . Suppose that there is
Ψ ≥ 0 such that

Ψ = lim
i→+∞

db

(
µi,

[
Tµi

]
α(i)

)
= inf

{
db

(
µi,

[
Tµi

]
α(i)

)
: i ∈ N

}
. (4.8)

We now to prove that Ψ = 0. Suppose, based on contrary that Ψ > 0. Then, for every ε > 0, there is
a natural number j such that

db

(
µ j,

[
Tµ j

]
α( j)

)
< Ψ + ε.

By (Fi),

F

[
db

(
µ j,

[
Tµ j

]
α( j)

)]
< F (Ψ + ε). (4.9)

Also, by applying (4.3), we have

1
2s

db

(
µ j,

[
Tµ j

]
α( j)

)
≤ db

(
µ j, µ j+1

)
, for all i ∈ N.

Since F-FSHR type contraction with respect to Ď(T, µ0), we have

F

[
db(µ j+1,

[
Tµ j+1

]
α( j+1)

)
]

= F
[
d(µ j+1, µ j+2)

]
≤ F

[
Ĥb

([
T

(
µ j

)]
α( j)

,
[
T

(
µ j+1

)]
α( j+1)

)]
− τ

(
U(µ j, µ j+1)

)
≤ F

[
e1

(
db

(
µ j,

[
T

(
µ j

)]
α( j)

))
+ e2

(
db

(
µ j,

[
T

(
µ j

)]
α( j)

))
+e3

(
db

(
µ j+1,

[
T

(
µ j+1

)]
α( j+1)

))
+

e4

2s

(
db

(
µ j,

[
T

(
µ j+1

)]
α( j+1)

))
+

e5

2s

(
db

(
µ j+1,

[
T

(
µ j

)]
α( j)

))]
− τ

(
U(µ j, µ j+1)

)
.

Due to the above hypothesis, this, in turn, yields:

F

[
db(µ j+1,

[
Tµ j+1

]
α( j+1)

)
]
≤ F

[
e1db

(
µ j,

[
T

(
µ j

)]
α( j)

)
+ e2

(
db

(
µ j,

[
T

(
µ j

)]
α( j)

))
+e3

(
db

(
µ j+1,

[
T

(
µ j+1

)]
α( j+1)

))
+

se4

2s
db

(
µ j,

[
T

(
µ j

)]
α( j)

)
+

se4

2s
db

([
T

(
µ j

)]
α( j)

,
[
T

(
µ j+1

)]
α( j+1)

)
+

2se5

2s

(
db(µ j,

[
T

(
µ j

)]
α( j)

)]
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1217

−τ
(
U(µ j, µ j+1)

)
≤ F

[
e1db

(
µ j,

[
T

(
µ j

)]
α( j)

)
+ e2

(
db

(
µ j,

[
T

(
µ j

)]
α( j)

))
+e3

(
db

(
µ j+1,

[
T

(
µ j+1

)]
α( j+1)

))
+e4

(
db

(
µ j,

[
T

(
µ j

)]
α( j)

))
+e5

(
db

(
µ j,

[
T

(
µ j

)]
α( j)

))]
− τ

(
U(µ j, µ j+1)

)
.

This implies

F

[
db(µ j+1,

[
Tµ j+1

]
α( j+1)

)
]
≤ F

[
db(µ j,

[
Tµ j

]
α( j)

)
]
−
τ
(
U(µ j, µ j+1)

)
1 − e3

.

Since
1
2s

db

(
µ j+1,

[
Tµ j+1

]
α( j+1)

)
≤ db

(
µ j+1, µ j+2

)
, for all i ∈ N.

By appealing to above observation, we obtain

F

[
db(µ j+2,

[
Tµ j+2

]
α( j+2)

)
]
≤ F

[
db(µ j+1,

[
Tµ j+1

]
α( j)

)
]
−
τ
(
U(µ j+1, µ j+2)

)
1 − e3

. (4.10)

Continuing these fashion, we obtain

F

[
db(µ j+i,

[
Tµ j+i

]
α( j+i)

)
]
≤ F

[
db

(
µ j+(i−1),

[
Tµ j+(i−1)

]
α( j+(i−1))

)]
−
τ
(
U(µ j+(i−1), µ j+i)

)
1 − e3

(4.11)

≤ F

[
db

(
µ j+(i−2),

[
Tµ j+(i−2)

]
α( j+(i−2))

)]
−


τ(U(µ j+(i−2),µ j+(i−1)))

1−e3

+
τ(U(µ j+(i−1),µ j+i))

1−e3

...

≤ F

[
db

(
µ j0 ,

[
Tµ j0

]
α( j0)

)]
−

(n − j0) τ
(
U(µ j0−1 , µ j0)

)
1 − e3

< F (Ψ + ε) −
(n − j0) τ

(
U(µ j0−1 , µ j0)

)
1 − e3

.

Upon setting i→ +∞, we have

lim
i→+∞

F

[
db

(
µ j+i,

[
Tµ j+i

]
α( j+i)

)]
= −∞.

Also, in veiw of (Fii) , we get

lim
i→+∞

[
db(µ j+i,

[
Tµ j+i

]
α( j+i)

)
]

= 0.

So, there is i1 ∈ N such that db(µ j+i,
[
Tµ j+i

]
α( j+i)

) < Ψ for all i > i1, which is a contradiction with
repect to Ψ. Therefore, we have

lim
i→+∞

[
db

(
µi,

[
Tµi

]
α(i)

)]
= 0. (4.12)
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Now, we show that
lim

i,m→+∞
d(µi, µm) = 0. (4.13)

Let us assume on the contrary that, for every ε > 0 there are sequences γ(i) and δ(i) in N such that

d(µγ(i) , µδ(i)) ≥ ε, db

(
µδ(i)−1 ,

[
Tµγ(i)−1

]
α(γ(i)−1)

)
< ε, γ(i) > δ(i) > i, (4.14)

for all i ∈ N. So, we have

d(µγ(i) , µδ(i)) ≤ sdb

(
µγ(i)−1 ,

[
Tµγ(i)−1

]
α(γ(i)−1)

)
+ sdb

([
Tµγ(i)−1

]
α(γ(i)−1)

, µδ(i)

)
(4.15)

< sdb

(
µγ(i) ,

[
Tµγ(i)−2

]
α(γ(i)−2)

)
+ sε.

By (4.12), ∃ i2 ∈ N such that

db

(
µγ(i)−1 ,

[
Tµγ(i)−1

]
α(γ(i)−1)

)
< ε, db

(
µγ(i) ,

[
Tµγ(i)

]
α(γ(i))

)
< ε, db

(
µδ(i) ,

[
Tµδ(i)

]
α(δ(i))

)
< ε, (4.16)

for all i > i2, which together with (4.15) yields

d(µγ(i) , µδ(i)) < 2sε) for all i > i2.

In view of (Fi), we can write

F
(
d(µγ(i) , µδ(i))

)
< F (2sε) for all i > i2. (4.17)

From (4.14) and (4.16), we write

1
2s

db

(
µγ(i) ,

[
Tµγ(i)

]
α(γ(i))

)
<

ε

2s
< d(µγ(i) , µδ(i)) for all i > i2. (4.18)

Applying the triangle inequality, we find that

ε ≤ d(µγ(i) , µγ(i)) ≤ sd
(
µγ(i) , µγ(i)+1

)
(4.19)

+ s2d
(
µγ(i)+1 , µδ(i)+1

)
+ s2d

(
µδ(i)+1 , µδ(i)

)
.

Next, if we setting to the limit i→ +∞ in (4.19) and make use of (4.12), then,

ε

s2 ≤ lim
i→+∞

inf d
(
µγ(i)+1 , µδ(i)+1

)
.

Also, there is i3 ∈ N such that
d
(
µγ(i)+1 , µδ(i)+1

)
> 0,

for all i > i3, that is, d
(
µγ(i)+1 , µδ(i)+1

)
> 0 > 0 for i > i3. Further, from (4.1) and Lemma (2.8), we can

write

F
[
d
(
µγ(i)+1 , µδ(i)+1

)]
≤ F

(
Ĥb

([
Tµγ(i)

]
α(γ(i))

,
[
Tµδ(i)

]
α(δ(i))

))
− τ(U(µγ(i), µδ(i))) (4.20)
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≤ F

[
e1(d(µγ(i), µδ(i))) + e2

(
db

(
µγ(i),

[
Tµγ(i)

]
α(γ(i))

))
+e3

(
db

(
µδ(i),

[
Tµδ(i)

]
α(δ(i))

))
+ e4

(
db

(
µγ(i),

[
Tµδ(i)

]
α(δ(i))

))
+e5

(
db

(
µδ(i),

[
Tµγ(i)

]
α(γ(i))

))]
− τ(U(µγ(i), µδ(i)))

≤ F

[
e1(d(µγ(i), µδ(i))) + e2

(
db

(
µγ(i),

[
Tµγ(i)

]
α(γ(i))

))
+e3

(
db

(
µδ(i),

[
Tµδ(i)

]
α(δ(i))

))
+ se4

(
d
(
µγ(i), µδ(i)

))
+se4

(
db

(
µδ(i),

[
Tµδ(i)

]
α(δ(i))

))
+ se5

(
d
(
µδ(i), µγ(i)

))
+se5

(
db

(
µγ(i),

[
Tµγ(i)

]
α(γ(i))

))]
− τ

(
U(µγ(i), µδ(i))

)
,

for all i > max {i1, i2} . In view of (4.16)–(4.18), inequaility (4.20) yields

F
[
d
(
µγ(i)+1 , µδ(i)+1

)]
≤ F

(
Ĥb

([
Tµγ(i)

]
α(γ(i))

,
[
Tµδ(i)

]
α(δ(i))

))
(4.21)

≤ F

[
e1(2sε)) + e2

(
db

(
d(µγ(i),

[
Tµγ(i)

]
α(γ(i))

))
+e3

(
db

(
µδ(i),

[
Tµδ(i)

]
α(δ(i))

))
+

e4

2
(sε + sε) +

e5

2
(sε + ε))]

−τ
(
U(µγ(i), µδ(i)))

)
,

for all i > max {i1, i2}. Taking the limit i→ +∞ in (4.21), we get

lim
i→+∞

F
[
d
(
µγ(i)+1 , µδ(i)+1

)]
= −∞,

which by vertue of (Fii), implies that limi→+∞ d
(
µγ(i)+1 , µδ(i)+1

)
= 0. In the light of (4.19), we can write

limi→+∞ d(µγ(i) , µδ(i)) = 0, which contradicts. Hence (4.13) holds true. Hence {µi} is a Cauchy sequence
in G. Since G is a complete b-metric-like space, there is a point c ∈ G such that

d(c, c) = lim
i→+∞

d(µi, c) = lim
i, j→+∞

d(µi, µ j) = 0. (4.22)

Now, we show futher the following inequatlity

1
2s

db

(
µi,

[
Tµi

]
α(i)

)
< d(µi, c) or

1
2s

db

(
µi+1,

[
Tµi+1

]
α(i+1)

)
< d (µi+1, c) . (4.23)

Assume on the contrary that ∃ i0 ∈ N such that

1
2s

db(µi0 ,
[
Tµi0

]
α(i0)) ≥ d(µi0 , c),

1
2s

db

(
µi0+1 ,

[
Tµi0+1

]
α(i0+1)

)
≥ d

(
µi0+1, c

)
. (4.24)

Then from (4.5) and (4.24), we have

db

(
µi0 ,

[
Tµi0

]
α(i0)

)
≤ sd(µi0 , c) + sdb

(
c,

[
Tµi0

]
α(i0)

)
AIMS Mathematics Volume 8, Issue 1, 1208–1229.
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≤
1
2s

sdb

(
µi0 ,

[
Tµi0

]
α(i0)

)
+

1
2s

sdb

(
µi0+1 ,

[
Tµi0+1

]
α(i0+1)

)
≤

1
2

db

(
µi0 ,

[
Tµi0

]
α(i0)

)
+

1
2

db

(
µi0 ,

[
Tµi0

]
α(i0)

)
≤ db

(
µi0 ,

[
Tµi0

]
α(i0)

)
,

a contradiction. Thus (4.23) holds true. So,we can write

F
(
db

(
µi+1, [T (c)]α(c)

))
≤ F

[
Ĥb(

[
T (µi)

]
α(i) , [T (c)]α(c))

]
− τ (U(µi, c)) (4.25)

≤ F
[
e1(d(µi, c)) + e2db

(
µi,

[
T (µi)

]
α(i)

)
+e3db

(
c, [T (c)]α(c)

)
+

e4

2s
db

(
µi, [T (c)]α(c)

)
+

e5

2s
db

(
c,

[
T (µi)

]
α(i)

)]
− τ (U(µi, c)) ,

or

F
(
d
(
µi+2, [T (c)]α(c)

))
≤ F

[
Ĥb(

[
T (µi+1)

]
α(i+1) , [T (c)]α(c))

]
− τ (U(µi, c)) (4.26)

≤ F
[
e1(d(µi+1, c)) + e2db

(
µi+1,

[
T (µi+1)

]
α(i+1)

)
+e3db

(
c, [T (c)]α(c)

)
+

e4

2s

(
µi+1, [T (c)]α(c)

)
+

e5

2s
db

(
c,

[
T (µi+1)

]
α(i+1)

)]
− τ (U(µi+1, c)) .

Now, let us now examine the following cases:
Case 1. Assume that (4.25) holds true. From (4.25), we have

F
(
db

(
µi+1, [T (c)]α(c)

))
≤ F

[
Ĥb(

[
T (µi)

]
α(i) , [T (c)]α(c))

]
− τ (U(µi, c)) (4.27)

≤ F
[
e1(d(µi, c)) + e2db

(
µi,

[
T (µi)

]
α(i)

)
+e3db

(
c, [T (c)]α(c)

)
+

e4

2
db (µi, c)

+
e4

2
db

(
c, [T (c)]α(c)

)
+

e5

2
d (c, µi)

+
e5

2
db

(
µi,

[
T (µi)

]
α(i)

)]
− τ (U(µi, c)) .

By (4.12) and (4.22), there is i4 ∈ N such that for some ε1 > 0

d(c, µi) < ε1, db(µi,
[
T (µi)

]
α(i)) < ε1, for i > i4. (4.28)

From (4.27) and (4.28), we have
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F
(
db

(
µi+1, [T (c)]α(c)

))
≤ F

[
Ĥb(

[
T (µi)

]
α(i) , [T (c)]α(c))

]
− τ (U(µi, c)) , (4.29)

≤ F
[
e1(d(µi, c)) + e2db

(
µi,

[
T (µi)

]
α(i)

)
+e3db

(
c, [T (c)]α(c)

)
+

e4

2
(ε1)

+
e4

2
db

(
c, [T (c)]α(c)

)
+ e5 (ε1)

−τ (U(µi, c)) ,

for all i > i4. Taking the limit as i→ +∞ in (4.29), we find that limi→+∞ F
(
db

(
µi+1, [T (c)]α(c)

))
= −∞.

By means of (Fii), we have
lim

i→+∞
db(µi+1, [T (c)]α(c)) = 0.

On the other hand, we see that

db

(
c, [T (c)]α(c)

)
≤ d (c, µi+1) + db

(
µi+1, [T (c)]α(c)

)
.

Further, in the light of above hypothesis with respect to G 3 c 7−→ db(c,
[
T (µi)

]
α(i)) is Ď(T, µ0)-fuzzy

dynamic lower semi-continuous, we have

db(c, [T (c)]α(c)) ≤ lim
n→+∞

inf db(c,
[
T (µi)

]
α(i)) + 0 = 0.

Also, the closedness of [T (c)]α(c) implies that c ∈ [T (c)]α(c) which means that c is a fuzzy fixed
point of T.
Case 2. Assume that (4.26) holds true. From (4.26), we can write

F
(
db

(
µi+2, [T (c)]α(c)

))
≤ F

[
Ĥb(

[
T (µi+1)

]
α(i+1) , [T (c)]α(c))

]
− τ (U(µi+1, c)) (4.30)

≤ F
[
e1(d(µi+1, c)) + e2db

(
µi+1,

[
T (µi+1)

]
α(i+1)

)
+e3db

(
c, [T (c)]α(c)

)
+

e4

2
d (µi+1, c)

+
e4

2
db

(
c, [T (c)]α(c)

)
+

e5

2
d (c, µi+1)

+
e5

2
db

(
µi+1,

[
T (µi+1)

]
α(i+!)

)]
− τ (U(µi+1, c)) .

From (4.12) and (4.22), there is i5 ∈ N such that for some ε2 > 0

d(c, µi+1) < ε2, db(µi+1,
[
T (µi+1)

]
α(i+1)) < ε2, for i > i5. (4.31)

Now, from (4.30) and (4.31), we have

F
(
db

(
µi+2, [T (c)]α(c)

))
≤ F

[
Ĥb(

[
T (µi+1)

]
α(i+1) , [T (c)]α(c))

]
− τ (U(µi+1, c)) (4.32)

≤ F
[
e1(d(µi+1, c)) + e2db

(
µi+1,

[
T (µi+1)

]
α(i+1)

)
+e3db

(
c, [T (c)]α(c)

)
+

e4

2
(ε1)
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+
e4

2
db

(
c, [T (c)]α(c)

)
+ e5 (ε1)

−τ (U(µi+1, c)) .

for all i > i5. Taking the limit as i→ +∞ in (4.32), we see that limi→+∞ F
(
db

(
µi+2, [T (c)]α(c)

))
= −∞.

By means of (Fii), we have
lim

i→+∞
db(µi+2, [T (c)]α(c)) = 0.

Consequently,
db

(
c, [T (c)]α(c)

)
≤ d (c, µi+2) + db

(
µi+2, [T (c)]α(c)

)
.

Further, in view of above fashion with respect to G 3 c 7−→ db(c,
[
T (µi)

]
α(i)) is Ď(T, µ0)-fuzzy

dynamic lower semi-continuous, we have

db(c, [T (c)]α(c)) ≤ lim
i→+∞

inf db(c,
[
T (µi+1)

]
α(i+1)) + 0 = 0.

Also, the closedness of [T (c)]α(c) , which implies that c ∈ [T (c)]α(c). Hence, c is a fuzzy fixed point
of T. �

Corollary 4.4. Let (G, d) be a b-metric-like space with s ≥ 1. Assume that T : G → µ(G) is a F-fuzzy
Suzuki-Kannan (abbr., F-FSK) type contraction with respect to fuzzy dynamic system Ď

([
Tµ

]
α , µ0

)
and

α : G → [0, 1] such that
[
T (µi)

]
α(i) are nonempty closed subsets of G. Assume that for some F ∈ ∇z

and τ : (0,+∞)→ (0,+∞) such that

1
2s

db

(
µi−1,

[
T (µi−1)

]
α(i−1)

)
≤ d (µi−1, µi) ,

we have
τ(U(µi−1, µi)) + F

[
Ĥb

([
T (µi)

]
α(i) ,

[
T (µi+1)

]
α(i+1)

)]
≤ F (U(µi−1, µi)),

where
U(µi−1, µi) = e2db

(
µi−1,

[
T (µi−1)

]
α(i−1)

)
+ e3db

(
µi,

[
T (µi)

]
α(i)

)
,

for all µi ∈ Ď
([

Tµ
]
α , µ0

)
, Ĥb

([
T (µi)

]
α(i) ,

[
T (µi+1)

]
α(i+1)

)
> 0, where e2, e3 ∈ [0, 1] such that e1+e2 = 1.

Assume that (i)–(iii) are satisfied. Then T has a fuzzy fixed point.

Corollary 4.5. Let (G, d) be a b-metric-like space with s ≥ 1. Assume that T : G → µ(G) is a F-fuzzy
Suzuki-Chatterjea (abbr., F-FSC) type contraction with respect to fuzzy dynamic system Ď

([
Tµ

]
α , µ0

)
and α : G → [0, 1] such that

[
T (µi)

]
α(i) are nonempty closed subsets of G. Assume that for some

F ∈ ∇z and τ : (0,+∞)→ (0,+∞) such that

1
2s

db

(
µi−1,

[
T (µi−1)

]
α(i−1)

)
≤ d (µi−1, µi) ,

we have
τ(U(µi−1, µi)) + F

[
Ĥb

([
T (µi)

]
α(i) ,

[
T (µi+1)

]
α(i+1)

)]
≤ F (U(µi−1, µi)),

where
U(µi−1, µi) = e4db

(
µi−1,

[
T (µi)

]
α(i)

)
+ e5db

(
µi,

[
T (µi−1)

]
α(i−1)

)
,

for all µi ∈ Ď
([

Tµ
]
α , µ0

)
, Ĥb

([
T (µi)

]
α(i) ,

[
T (µi+1)

]
α(i+1)

)
> 0, where e4, e5 ∈ [0, 1

2 ). Assume that
(i)–(iii) are satisfied. Then T has a fuzzy fixed point.
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Corollary 4.6. Let (G, d) be a b-metric-like space with s ≥ 1. Assume that T : G → µ(G) is a F-fuzzy
Suzuki-Banach (abbr., F-FSB) type contraction with respect to fuzzy dynamic system Ď

([
Tµ

]
α , µ0

)
and

α : G → [0, 1] such that
[
T (µi)

]
α(i) are nonempty closed subsets of G. Assume that for some F ∈ ∇z

and τ : (0,+∞)→ (0,+∞) such that

1
2s

db

(
µi−1,

[
T (µi−1)

]
α(i−1)

)
≤ d (µi−1, µi) ,

we have
τ(d(µi−1, µi)) + F

[
Ĥb

([
T (µi)

]
α(i) ,

[
T (µi+1)

]
α(i+1)

)]
≤ F (e1d(µi−1, µi)),

for all µi ∈ Ď
([

Tµ
]
α , µ0

)
, Ĥb

([
T (µi)

]
α(i) ,

[
T (µi+1)

]
α(i+1)

)
> 0, where e1 ∈ [0, 1). Assume that (i) and

(ii) are satisfied. Then T has a fuzzy fixed point.

Corollary 4.7. Let (G, d) be a b-metric-like space with s ≥ 1. Assume that T : G → µ(G) is a F-
fuzzy Banach (abbr., F-FB) type contraction with respect to fuzzy dynamic system Ď

([
Tµ

]
α , µ0

)
and

α : G → [0, 1] such that
[
T (µi)

]
α(i) are nonempty closed subsets of G. Assume that for some F ∈ ∇z

and τ : (0,+∞)→ (0,+∞) such that

τ(d(µi−1, µi)) + F
[
Ĥb

([
T (µi)

]
α(i) ,

[
T (µi+1)

]
α(i+1)

)]
≤ F (e1d(µi−1, µi))

for all µi ∈ Ď
([

Tµ
]
α , µ0

)
, Ĥb

([
T (µi)

]
α(i) ,

[
T (µi+1)

]
α(i+1)

)
> 0, where e1 ∈ [0, 1). Assume that (i) and

(ii) are satisfied. Then T has a fuzzy fixed point.

Example 4.8. Let G = R+ ∪ {0} and d : G ×G → R+ ∪ {0} be a function defined by

d (µ1, µ2) = (max {µ1, µ2})2 .

Clearly, (d,G) is a complete b-metric-like space with s = 4
3 . Define a fuzzy mapping T : G → F(G)

by

T (µ)
(
µ′

)
=


1, if 0 ≤ µ′ ≤ µ

4 ;
1
2 , if µ

4 < µ
′ ≤

µ

3 ;
1
4 , if µ

3 < µ
′ ≤

µ

2 ;
0, if µ

2 < µ
′ ≤ 1.

Define F : R+ → R and τ : R+ → R+ by F (µ) = ln(µ) and

τ(h) =

{
ln(1), for µ = 0, 1;

1
100 , for µ ∈ (1,+∞).

For all µ ∈ Ď
([

Tµ
]
α , µ0

)
, there is α (µ) = 1 such that

[
Tµ

]
α(µ) =

[
0, µ2

]
. Then we have

1
2s

db

(
µi,

[
T (µi)

]
α(i)

)
≤ d (µi, µi+1) ,

setting e2 = e3 = e4 = e4 = 0 and e1 = 1, we obtain

τ(d(µi, µi+1)) + F
[
Ĥb

([
T (µi)

]
α(i) ,

[
T (µi+1)

]
α(i+1)

)]
≤ F (αd(µi, µi+1)).

Hence all the required possible hypothesis of Corollary 4.6 are satisfied, Thus T has a fuzzy fixed
point.
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5. An application to Hukuhara fuzzy differentiability problem

Fuzzy differential equations and fuzzy integral equations have always been of key importance in
dynamical programming and engineering problems. Therefore, various authors used different
techniques for solving an fuzzy differential equations and fuzzy integral equations. Among those,
Hukuhara differentiability for fuzzy valued function is the most celebrated problem. This section
renders solution of a fuzzy differential equations. For this we explore Hukuhara differentiability for
fuzzy functions and fuzzy initial valued problem in the setting of b-metric-like space.

Definition 5.1. A function g : R→ [0, 1] is called a fuzzy real number if
(i) g is normal, i.e., there is µ0 ∈ R in such a way that g (µ0) = 1;
(ii) ga is fuzzy convex, i.e., g (β (µ1) + (1 − β) µ2) ≥ min {g (µ1), g (µ2))}, 0 ≤ β ≤ 1, for all µ1, µ2 ∈

R;
(iii) g is upper semi-continuous;
(iiii)

[
g
]0

= cl {µ ∈ R : g (µ) > 0} is compact.

Note that, for α ∈ (0, 1], [
g
]α

= cl {µ ∈ R : g (µ) > α} =
[
gαs1
, gαs2

]
,

expresses α − cut of the fuzzy set g. For g ∈ P1, where P1 represents the family of fuzzy real numbers,
one can write

[
g
]α
∈ Cc (R) f orallα ∈ [0, 1], where Cc (R) denotes the set of all compact and convex

subsets of R. The supremum on P1 endowed with the b-metric-like is defined by

d∗(g1, g2) = sup
α∈[0,1]

[∣∣∣gα1,s1
− gα2,s1

∣∣∣ +
∣∣∣gα1,s2

− gα2,s2

∣∣∣]2
,

for all g1, g2 ∈ P1, gα1,s1
− gα2,s1

= diam
([

g
])
. Consider the continuous fuzzy function defined on [0,Γ],

for Γ > 0 as C
(
[0,Γ] , P1

)
endowed with the complete b-metric-like with respect to b-metric-like as:

d(g1, g2) = sup
µ∈[0,1]

[
d∗(g1, g2)

]
,

for all g1, g2 ∈ C1
(
[0,Γ] , P1

)
. Consider the fuzzy initial valued problem:{

g′ (µ) = f (µ, g (µ)) , µ ∈ I = [0,Γ] ;
g (0) = 0,

(5.1)

where g′ is the Hukuhara differentiability and f is the fuzzy function, i.e., f : I×P1 → P1 is continuous.
Denote the set of all continuous fuzzy functions f : I → P1 which have continuous derivatives by
C1

(
I, P1

)
. A family µ ∈ C1

(
I, P1

)
is a solution of fuzzy initial valued problem (5.1) if and only if

g (µ) = g0ΘE (−1)µ0 f (r, g (r)) dr, µ ∈ I = [0,Γ] , (5.2)

where (5.2) is called a fuzzy Volterra integral equation.
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Theorem 5.2. Let f : I × P1 → P1 be a continuous function such that

g < g′ implies f (µ, g (µ)) < f
(
µ, g′ (µ)

)
,

for g, g′ ∈ P1, In addition, assume that τ : (0,+∞)→ (0,+∞) such that[∣∣∣ f (µ, g (µ)) − f
(
µ, g′ (µ)

)∣∣∣]2
≤ τe−τ max

µ∈I

(
d∗(g1 (µ) , g2 (µ))e−τµ

)
,

where g < g′ f orallµ ∈ I and g, g′ ∈ P1. Then the FIVP (5.1) has a fuzzy solution with respect to
C1

(
I, P1

)
.

Proof. Let τ : (0,+∞)→ (0,+∞) and the family C1
(
I, P1

)
endow with the b-metric-like as:

dτ(g, g′) = sup
µ∈[0,1]

[
d∗(g (µ) , g′ (µ))e−τµ

]
,

for all g, g′ ∈ C1
(
I, P1

)
. Let S : G → (0, 1]. Due to (5.2) for g ∈ G, one can write

Yg (µ) = g0ΘE (−1)µ0 f (r, g (r)) dr, µ ∈ I.

Assume that g < g. Then we have

Yg (µ) = g0ΘE (−1)µ0 f (r, g (r)) dr

< g0ΘE (−1)µ0 f
(
r, g′ (r)

)
dr

= Yg′ (µ) .

This implies Yg (µ) , Yg′ (µ). Assume a fuzzy mapping T : G → PG is defined by
ηTg (t) =

{
Y (g) , t (µ) = Yg (µ) ;
0, otherwise.

ηTg′ (t) =

{
Y (g′) , t (µ) = Yg′ (µ) ;
0, otherwise.

Owing to α (g) = S (g) and α (g′) = S (g′) , we have[
Tg

]
α(g) = {t ∈ G : Tg (µ) ≥ S (g)} = Yg (µ) ,

and on the same fashion, we have[
Tg′

]
α(g′) =

{
t ∈ G : Tg′ (µ) ≥ S

(
g′

)}
= Yg′ (µ) .

Therefore,

Ĥb

([
Tg

]
α(g) ,

[
Tg′

]
α(g′)

)
= max

 supg∈[Tg]α(g)
infg′∈[Tg′]α(g′)

d (g, g′) ,

supg′∈[Tg′]α(g′)
infg∈[Tg]α(g)

d (g, g′) ,


≤ max

{
sup
µ∈I

[∣∣∣Yg (µ)
∣∣∣ +

∣∣∣Yg′ (µ)
∣∣∣]2

}
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= sup
µ∈I

[∣∣∣Yg (µ)
∣∣∣ +

∣∣∣Yg′ (µ)
∣∣∣]2

= sup
µ∈I

[∣∣∣g0ΘE (−1)µ0 f (r, g (r)) dr
∣∣∣ +

∣∣∣g0ΘE (−1)µ0 f
(
r, g′ (r)

)
dr

∣∣∣]2

= sup
µ∈I

[
g0ΘE (−1)µ0

(
| f (r, g (r)) dr| +

∣∣∣ f (
r, g′ (r)

)
dr

∣∣∣)]2
.

Then, in view of above hypothesis we have:,

Ĥb

([
Tg

]
α(g) ,

[
Tg′

]
α(g′)

)
≤ sup

µ∈I

[∣∣∣µ0 f (r, g (r))
∣∣∣ +

∣∣∣µ0 f
(
r, g′ (r)

)∣∣∣ dr
]2

≤ sup
µ∈I

[∣∣∣µ0 f (r, g (r))
∣∣∣ 1

2 +
∣∣∣µ0 f

(
r, g′ (r)

)∣∣∣ 1
2 dr

]2

≤ sup
µ∈I

{
µ
0τe−τ |g (r) − g′ (r)| e−τreτrdr

}
= τe−τ

1
τ

dτ(g, g′)eτr.

By appealing to the above fashion, we obtain

Ĥb

([
Tg

]
α(g) ,

[
Tg′

]
α(g′)

)
e−τr ≤ e−τdτ(g, g′),

or equivalently,
Ĥb

([
Tg

]
α(g) ,

[
Tg′

]
α(g′)

)
≤ e−τdτ(g, g′).

Owing to logarithms, we have

ln
(
Ĥb

([
Tg

]
α(g) ,

[
Tg′

]
α(g′)

))
≤ ln

(
e−τdτ(g, g′)

)
,

Owing to the above speculation, this, in turn, yields:

τ
(
dτ

(
g, g′

))
+ ln

(
Ĥb

([
Tg

]
α(g) ,

[
Tg′

]
α(g′)

))
≤ ln

(
dτ(g, g′)

)
.

Due to F -contraction, with the setting F (µ) = ln µ, f orallµ ∈ C1
(
I, P1

)
, we have

τ
(
dτ

(
g, g′

))
+ F

(
Ĥb

([
Tg

]
α(g) ,

[
Tg′

]
α(g′)

))
≤ F

(
dτ(g, g′)

)
.

It follows that there is c ∈ C1
(
I, P1

)
such that c ∈ [Tc]α(c) . Hence all the possible hypothesis of

Corollary 4.7 are satisfied and consequently fuzzy initial valued problem (5.1) has a fuzzy solution
c ∈ C1

(
I, P1

)
in C1

(
I, P1

)
. �

6. Concluding conclusions and observations

The article regards with new approach of fuzzy dynamic process on b-metric-like space, specifically
the mapping of set-valued (extended) fuzzy intervals endowed with the b-metric-like. After we just
adopt the standard setting of fuzzy dynamic process in b-metric-like space which defines convergence
theorems in generalized F -contraction via expectations of fuzzy Suzuki-type contraction mappings.
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Subsequently, corollaries are originated from the main result. To explain the example in the main
section, a graphically interpretation has been created that best illustrates the fuzzy dynamic process to
the readers. At the end, gives an application of our results in solving Hukuhara differentiability through
the fuzzy initial valued problem and fuzzy functions. The pivotal role of Hukuhara differentiability in
fuzzy dynamic process is stated. In future, this methodology can be inspected intuitionistic fuzzy and
picture fuzzy sets the fuzzy dynamic process for a hybrid pair of mappings can be examined.
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