Research article

New stability criteria for systems with an interval time-varying delay

  • Received: 17 August 2022 Revised: 11 September 2022 Accepted: 20 September 2022 Published: 17 October 2022
  • MSC : 34K20, 34D20, 34K25

  • This paper studies the stability analysis of systems with an interval time-varying delay. First, some new integral inequalities are introduced. Second, based on these new integral inequalities, some less conservative stability criteria are introduced in terms of the linear matrix inequalities. Finally, the merits of the stability criteria are shown via two numerical examples.

    Citation: Junkang Tian, Zerong Ren, Yanmin Liu. New stability criteria for systems with an interval time-varying delay[J]. AIMS Mathematics, 2023, 8(1): 1139-1153. doi: 10.3934/math.2023057

    Related Papers:

  • This paper studies the stability analysis of systems with an interval time-varying delay. First, some new integral inequalities are introduced. Second, based on these new integral inequalities, some less conservative stability criteria are introduced in terms of the linear matrix inequalities. Finally, the merits of the stability criteria are shown via two numerical examples.



    加载中


    [1] H. Wang, Q. X. Zhu, Global stabilization of a class of stochastic nonlinear time-delay systems with SISS inverse dynamics, IEEE T. Automat. Contr., 65 (2020), 4448–4455. https://doi.org/10.1109/TAC.2020.3005149 doi: 10.1109/TAC.2020.3005149
    [2] H. Y. Shao, New delay-dependent stability criteria for systems with interval delay, Automatica, 45 (2009), 744–749. https://doi.org/10.1016/j.automatica.2008.09.010 doi: 10.1016/j.automatica.2008.09.010
    [3] J. Sun, G. P. Liu, J. Chen, D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delay, Automatica, 46 (2010), 466–470. https://doi.org/10.1016/j.automatica.2009.11.002 doi: 10.1016/j.automatica.2009.11.002
    [4] W. Qian, J. Liu, New stability analysis for systems with interval time-varying delay, J. Franklin I., 350 (2013), 890–897. https://doi.org/10.1016/j.jfranklin.2012.12.017 doi: 10.1016/j.jfranklin.2012.12.017
    [5] L. M. Ding, Y. He, M. Wu, X. M. Zhang, A novel delay partitioning method for stability analysis of interval time-varying delay systems, J. Franklin I., 354 (2017), 1209–1219. https://doi.org/10.1016/j.jfranklin.2016.11.022 doi: 10.1016/j.jfranklin.2016.11.022
    [6] C. Maharajan, R. Raja, J. Cao, G. Rajchakit, A. Alsaedi, Impulsive Cohen-Grossberg BAM neural networks with mixed time-delays: An exponential stability analysis issue, Neurocomputing, 275 (2018), 2588–2602. https://doi.org/10.1016/j.neucom.2017.11.028 doi: 10.1016/j.neucom.2017.11.028
    [7] C. Maharajan, R. Raja, J. Cao, G. Rajchakit, Novel global robust exponential stability criterion for uncertain inertial-type BAM neural networks with discrete and distributed time-varying delays via Lagrange sense, J. Franklin I., 355 (2018), 4727–4754. https://doi.org/10.1016/j.jfranklin.2018.04.034 doi: 10.1016/j.jfranklin.2018.04.034
    [8] A. Pratap, R. Raja, J. Alzabut, J. Dianavinnarasi, J. Cao, G. Rajchakit, Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses, Neural Process. Lett., 51 (2020), 1485–1526. https://doi.org/10.1007/s11063-019-10154-1 doi: 10.1007/s11063-019-10154-1
    [9] A. Pratap, R. Raja, J. Cao, G. Rajchakit, H. M. Fardoun, Stability and synchronization criteria for fractional order competitive neural networks with time delays: An asymptotic expansion of Mittag Leffler function, J. Franklin I., 356 (2019), 2212–2239. https://doi.org/10.1016/j.jfranklin.2019.01.017 doi: 10.1016/j.jfranklin.2019.01.017
    [10] A. Pratap, R. Raja, J. Cao, G. Rajchakit, F. E. Alsaadi, Further synchronization in finite time analysis for time-varying delayed fractional order memristive competitive neural networks with leakage delay, Neurocomputing, 317 (2018), 110–126. https://doi.org/10.1016/j.neucom.2018.08.016 doi: 10.1016/j.neucom.2018.08.016
    [11] C. Sowmiya, R. Raja, Q. Zhu, G. Rajchakit, Further mean-square asymptotic stability of impulsive discrete-time stochastic BAM neural networks with Markovian jumping and multiple time-varying delays, J. Franklin I., 356 (2019), 561–591. https://doi.org/10.1016/j.jfranklin.2018.09.037 doi: 10.1016/j.jfranklin.2018.09.037
    [12] Z. G. Feng, J. Lam, Stability and dissipativity analysis of distributed delay cellular neural networks, IEEE Trans. Neural Netw., 22 (2011), 976–981. https://doi.org/10.1109/TNN.2011.2128341 doi: 10.1109/TNN.2011.2128341
    [13] F. Long, C. K. Zhang, L. Jiang, Y. He, M. Wu, Stability analysis of systems with time-varying delay via improved Lyapunov-Krasovskii functionals, IEEE T. Syst. Man Cy. S., 51 (2021), 2457–2466. https://doi.org/10.1109/TSMC.2019.2914367 doi: 10.1109/TSMC.2019.2914367
    [14] L. M. Ding, Y. He, M. Wu, X. M. Zhang, A novel delay partitioning method for stability analysis of interval time-varying delay systems, J. Franklin I., 345 (2017), 1209–1219. https://doi.org/ 10.1016/j.jfranklin.2016.11.022 doi: 10.1016/j.jfranklin.2016.11.022
    [15] S. S. Mou, H. J. Gao, T. W. Chen, New delay-range-dependent stability condition for linear system, Proceedings of the 7th World Congress on Intelligent Control and Automation, 2008, 25–27. https://doi.org/10.1109/WCICA.2008.4592943 doi: 10.1109/WCICA.2008.4592943
    [16] J. H. Kim, Note on stability of linear systems with time-varying delay, Automatica, 47 (2011), 2118–2121. https://doi.org/10.1016/j.automatica.2011.05.023 doi: 10.1016/j.automatica.2011.05.023
    [17] J. M. Park, P. G. Park, Finite-interval quadratic polynomial inequalities and their application to time-delay systems, J. Franklin I., 357 (2020), 4316–4327. https://doi.org/10.1016/j.jfranklin.2020.01.022 doi: 10.1016/j.jfranklin.2020.01.022
    [18] K. Gu, An integral inequality in the stability problem of time-delay systems, Proceedings of the 39th IEEE Conference on Decision and Control, 2000, 12–15. https://doi.org/10.1109/CDC.2000.914233 doi: 10.1109/CDC.2000.914233
    [19] J. H. Kim, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64 (2016), 121–125. https://doi.org/10.1016/j.automatica.2015.08.025 doi: 10.1016/j.automatica.2015.08.025
    [20] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [21] P. G. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin I., 352 (2015), 1378–1396. https://doi.org/10.1016/j.jfranklin.2015.01.004 doi: 10.1016/j.jfranklin.2015.01.004
    [22] K. Liu, A. Seuret, Y. Q. Xia, Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality, Automatica, 76 (2017), 138–142. https://doi.org/10.1016/j.automatica.2016.11.001 doi: 10.1016/j.automatica.2016.11.001
    [23] H. B. Zeng, Y. He, M. Mu, J. H. She, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE T. Automat. Contr., 60 (2015), 2768–2772. https://doi.org/10.1109/TAC.2015.2404271 doi: 10.1109/TAC.2015.2404271
    [24] P. Park, J. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [25] A. Seuret, K. Liu, F. Gouaisbaut, Generalized reciprocally convex combination lemmas and its application to time-delay systems, Automatica, 95 (2018), 488–493. https://doi.org/10.1016/j.automatica.2018.06.017 doi: 10.1016/j.automatica.2018.06.017
    [26] X. M. Zhang, Q. L. Han, State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality, IEEE T. Neur. Net. Lear., 29 (2018), 1376–1381. https://doi.org/10.1109/TNNLS.2017.2661862 doi: 10.1109/TNNLS.2017.2661862
    [27] J. Chen, X. M. Zhang, J. H. Park, S. Y. Xu, Improved stability criteria for delayed neural networks using a quadratic function negative-definiteness approach, IEEE T. Neur. Net. Lear., 33 (2022), 1348–1354. https://doi.org/10.1109/TNNLS.2020.3042307 doi: 10.1109/TNNLS.2020.3042307
    [28] H. B. Zeng, H. C. Lin, Y. He, K. L. Teo, W. Wang, Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality, J. Franklin I., 357 (2020), 9930–9941. https://doi.org/10.1016/j.jfranklin.2020.07.034 doi: 10.1016/j.jfranklin.2020.07.034
    [29] X. M. Zhang, Q. L. Han, X. H. Ge, Sufficient conditions for a class of matrix-valubed polynomial inequalities on closed intervals applications to $H_{\infty}$ filtering for linear systems with time-varying delays, Automatica, 125 (2021), 109390. https://doi.org/10.1016/j.automatica.2020.109390 doi: 10.1016/j.automatica.2020.109390
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1161) PDF downloads(111) Cited by(1)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog