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Abstract: This paper studies the stability analysis of systems with an interval time-varying delay.
First, some new integral inequalities are introduced. Second, based on these new integral inequalities,
some less conservative stability criteria are introduced in terms of the linear matrix inequalities. Finally,
the merits of the stability criteria are shown via two numerical examples.

Keywords: integral inequality; time-varying delay; stability; linear matrix inequality (LMI)
Mathematics Subject Classification: 34K20, 34D20, 34K25

1. Introduction

Time-delay occurs in many practical systems, and it may cause poor performance or even instability.
Therefore, the stability analysis of time-delay systems has attracted considerable attention over the past
two decades [1-11]. The authors of [1-4] studied linear time-delay systems. The authors of [5—11]
studied nonlinear time-delay systems. As is well known, the Lyapunov-Krasovskii functional (LKF)
method is an effective method for stability analysis of time-delay systems. Researches often carried
out their studies in two steps. One step is to construct an appropriate LKF, and the other is to estimate
the derivative of the LKF. For the first one, there are many types of LKFs, such as integral delay
partitioning-based LKFs [12], the augmented LKFs [13] and delay partitioning-based LKFs [14,15].
Based on the delay-partitioning method, a new stability criterion for systems with an interval time-
varying delay is introduced in [15]. In [15], the time-varying delay satisfies 0 < h; < d(t) < h,, but
only the delay interval [0, /] is divided into m segments, i.e., the delay interval [Ay, h,] is ignored. This
motivated our present research.

Sometimes in order to contain more information about the time-delay, some quadratic terms of
the time-delay are introduced [16]. Therefore, it is necessary to study the negative-determination of
quadratic functions. In [17], a new inequality is proposed for the quadratic polynomials by introducing
free matrix variables. However, these free matrix variables increase computational complexity.
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In recent years, several inequalities have been introduced to estimate the integral terms in the
derivative of LKFs, such as the Jensen inequality [18,19], Wirtinger inequality [20], auxiliary
inequality [21], Bessel inequality [22] and free matrix inequality [23]. By using the Jensen inequality,
Wirtinger inequality and Bessel inequality to estimate the integral term in the derivative of the LKEF,
the term —1T()Q41(1) — =47 (DO (1) is obtained, where @ € (0,1), £i(¢) and {(1) are two real
column vectors and Q is a positive symmetric matrix. This term is usually handled by a reciprocally
convex lemma [24] and some improved reciprocally convex lemmas [25-29]. The advantage of these
lemmas lie in changing the non convex term into a convex expression. However, it is shown that these
lemmas increase the number of matrix variables which may increase computational complexity. This
motivated our present research.

In this paper, some new integral inequalities have been introduced without using any reciprocally
convex method. Based on these new integral inequalities and a new delay partitioning approach, some
new stability criteria are obtained for systems with a interval time-varying delay. It is worth noting
that not only the interval [0, /] but also the interval [/, h;] is partitioned. The merits of the presented
criteria are demonstrated through two numerical examples. The contributions of our paper are as
follows:

e Different from Refs. [19-24], some new integral inequalities are introduced to deal with the
integral term —h, ft :Zl ¥y ($)Ry(s)ds without using any reciprocally convex method.

e In this paper, not only the interval [0, ;] but also the interval [A, h,] is partitioned. A new LKF
is introduced based on this new delay-partitioning approach. It can be seen that the relationship among
some state vectors x’ (t — hy), x'(t — hy — mizhlz), e x(t=hy - mfn;l hi2) and x7 (¢t — h,) are considered
sufficiently, which may yield less conservative results.

In this paper, the set S” denotes the set of symmetric matrices, the set S’ denotes the set of
symmetric positive definite matrices and Sym {A} denotes A + A”.

2. Preliminary
Consider the following systems with a time-varying delay

{ x(t) = Ax(t) + Bx(t — h(1t)) 2.1)

x(0) = ¢(0), te[=h,0]

where x(f) € R" is the state vector and A, B, € R™" are constant matrices. The time-varying delay A(t)
satisfies

O0<h <h(t)<hy, hp=h—hy, 2.2)

) < u. (2.3)

Lemma 2.1. For any matrix R € S}, scalars h; and h, with h; < hy, scalar function 0 < h; < h(f) < hy,
a vector valued function y(¢) : [h, h,] — R" such that the following inequality holds for every integer
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t—hy M t—hy

—hi fh Y (DRy(s)ds < — Z o' (h(t) = h) fh Y (9Ry(s)ds
-y =0 t=h(?)

2.4)

t—h(t)

M
= > B'(hy - h(t)) f ¥ (9)Ry(s)ds,
i=0 !

—hy
— ha—h(® -1 _
where @ = B = I -a.

Proof. According to 0 < hy < h(t) < hy, for every integer M > 0, define a = hz}:—z(’); we have

hiy = (h(t) — hy) + (hy — h(?))
= (h(®) — hy) + ahypy
= (h(1) — ) + a[(h@®) = h1) + (ha = h(1))]
= (h(t) = y) + a(h(t) = hy) + @*hy
= (h(t) = y) + a(h(t) — y) + @ [(h() — hy) + (hy — h(1))] (2.5)
= (h(t) = hy) + a(h(t) = hy) + &2 (h(t) = y) + @ hyy

= (h(t) = hy) + a(h(®) = hy) + 2 h(E) = hy) + - - + MY h(@) = hy) + oMby,
> (h(t) = hy) + a(h(t) = hy) + &2 (h@) = b)) + - + M (@) = by) + &M (W) = ).
Similarly, the following inequality can be obtained easily:
hiy > (ha = h(D) + Bhy — h()) + B*(hy — h(t)) + - - - + B (ha — h(D)) + B (hy — h(1)). (2.6)

Then, based on (2.5) and (2.6), we can obtain:
t—h(t)

t—hy t—hy
. f VY (SRY(s)ds = — his f VT (SRY(s)ds — i f VI ($)Ry(s)ds

—hy t—h(r) t=hy

M t—hy
< - Z @ (h(f) — hy) f » ¥ ($)Ry(s)ds (2.7)

0

t—h(t)

-t -hw) [ R
i=0 t

—hy

Lemma 2.2. [18]. For a matrix R € S} and scalars a and b satisfying a < b, a vector function
v : [a,b] — R" such that the following inequality holds:

b b b
(b—a)f yT(s)Ry(s)dszf yT(s)dst y(s)ds. (2.8)

Lemma 2.3. [20]. For a matrix R € S’} and scalars a and b satisfying a < b, any continuously
differentiable function y : [a, b] — R" such that the following inequality holds:

1

—da

(QJRQy + 3Q1RQ)), (2.9)

b
f VT ()R (s)ds = 5

where
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Qp = y(b) - y(a)l;
Q; = y(b) + (@) - 7 [ y(s)ds.

Lemma 2.4. [23]. Let g(y) = ap + a;y + a»y*, where y € [hy,h,] and ag,a;,a, € R. For a given

nonnegative integer N, if the following conditions hold fori = 1,2,--- ,2":

(g(hy) <0,

(i)g(h) <0,

(i) s g(5hio + hy) + g(5Fhiy + hy) < 0,0 = 1,2, 2V,

then g(y) < 0.

Lemma 2.5. [29]. Let f(y) = ay + a1y + a»y* + azy’, where y € [h;, hs] and aq, a,, a», az € S", if there
exist constant matrices F; € R™" such that fori = 1, 2:

hi(a1+F1+F1T)+a0 %612—F1+h,‘Fg
* hia3—F2—F2T

<0,

then f(y) < 0.
Based on Lemma 2.1 and Lemma 2.2, a novel integral inequality is obtained as follows.

Lemma 2.6. For any matrix R € S} and scalars h; and h, with h; < h,, a nonnegative integer M and
scalar function O < h; < h(t) < h,, any continuously differentiable function y : [a, b] — R”" such that
the following inequality holds:

t—hy
= hi, f Y ()Ry(s)ds
t

—hy

&'[y(t = hy) = y(t = )" RIy(t — hy) — y(t — h(1))] (2.10)

M
<=2,
i=0
M
- Zﬁ’ [y(r = h(1)) = y(t = ho)]" RIy(1 — h(1)) — y(t — ho)],
i=0
where a = %,ﬁ: 1 -a.

Remark 1. When M = 1, Lemma 2.6 is reduced to the method in [15]. So the method in [15] is a
special case of Lemma 2.6 in this paper.
Based on Lemma 2.1 and Lemma 2.3, another improved integral inequality is obtained as follows.

Lemma 2.7. For any matrix R € S}, scalars h; and h, with h; < hy, a nonnegative integer M and scalar
function 0 < hy < h(t) < h,, any continuously differentiable function y : [a,b] — R”" such that the
following inequality holds:

t—hy M M
~h1y f Y (s)Ry(s)ds < — Z ' (QTRQ, +3QIRY,) — Z B(QIRQ; +3Q0RA,),  (2.11)
1=hy i=0 i=0

Wherea:}%}j’),ﬂzl—a.

Q) = y(t = hy) — y(t - h(D))),
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Qy = y(t = hy) + y(t = h(D) = 2 [ ().
Qs = y(t — h(1)) — y(t — hy),

= —h(t)
Q4 = y(l — h(t)) + y(l - /’12) — hz—Lh(t) [ihz ! y(s)d&

3. Results

Theorem 3.1. For given scalars 4; > 0 and h, > 0, u and nonnegative integers M, m; and m,
System (2.1) is asymptotically stable if there exist matrices P € SV 0, € §™" 0, € §™",
Q;es" ™ 0,e8" V" OseS" RieS",i=1,2,-- ,mand Z € S", k=1,2,--- ,m, such that
the following linear matrix inequalities (LMIs) hold for k = 1,2,--- ,mj:

@ =Sym {H1T1 PH12} + 115, 0111y, — 13,0111y, + 113, Qo113 — 15,0511y + 13, Q5103 — 15, 05115,

T T T T
+ I13;Oullss — 113, Qallzg + €, O5€m+i = (1 = )€ 4imy) 42 Q5€20m1 +my)+2

n

my my mj n
hy 2 h122 Th &T 5 &T 7
+ ;( ) eoRiep + ;(m—z) eoZrey — ; 2 R - kZ:; 2 L2+ X Xy (3.1)

M M
- Z /T, Zi gy — ZﬁjﬁLkaﬁm <0,

J=0 Jj=0
where
I = [ elT 61{1+m+2 egm+m+l egm +mp+2 egm+2m +1 ]Ta
1+my 1+my 1+my 1+2my
I, = [ eg elT h eg o e’zl - ez;ll"'l 77;11"'2 - er7r;1+3 e er7;11+mz - e;u+mz+1 ]T ’
A
szz[eg e3T e,TmH ]T,
H23 = [ er];11+1 erj;11+2 T e;1+m2 ]T 4
s = [ er7;11+2 er7;11+3 T e;]+m2+1 ]T s
I = [ e’7;11+m2+2 el{11+m2+3 e egm]+mz ]T ’
s = [ eryr;1+mz+3 81{11+m2+4 U 62Tm1+m2+1 ]T ,
H33 = [ egm1+m2+2 egm1+mz+3 T egm1+2m2 ]T ’
4 = [ 62Tm1+m2+3 egm1+m2+4 T 62Tm1+2m2+1 ]T ,
% = [ eiT - eiT+l eiT + eiT+l - 2€£1|+m2+1+i ]T >
ik = [ 511+1+k - e;{u+2+k 6511+1+k + e;1+2+k - zegm1+m2+1+k ]T ’

e
T

_[,r _ T T T AT
H41k_[em1+k Emrm)r2 Cmrk T €o(my+my)2 262(m1+m2)+3] )

T T T T 2T r
i = [ Comim)+2 ~ Cmritk  C2mrm+2 T Cmyalak T “€2(m; tmy)+a ] )

ey = Aey + Beyy, somy+2s
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Ri = diag(R,-, 3Rl’), I = 1, 2, ,mi,
Zy = diag(Z;,37;), k=1,2,--- ,my,
€ = [ Onx(i—l)n I, Onx(Z(m|+mz)+4—i)n ] Jdori=1,2,---, 2(my + my) + 4.

Proof. Let integers my > 0, my > 0, [0, h;] and [hy, h,] be divisible into m; and m, segments, i.e.,
[0, 7] = U;’Ql[%hl, L] and [hy, ho] = U2, [h + k_ll’llg,l’ll + -~ & h1). Thus, for any 7 > 0, there exists
an integer k € {1,2,--- ,my} such that h(t) € [h1 +X hlz, hy + h12] Then, we introduce the following
LKF candidate:

VOO = VOO stoet o s (3.2)
V(x@))lk = Vi(x(0)) + Va(x(2)) + V3(x(2)), (3.3)
where
Vi(x(0) = n" () Py(2), (3.4)
Vz(X(t))=fh TT(S)Q1T3(s)ds+fh]2 T4 ()02 4(s)dss
f , TL(O)0:Ys(0)ds + f " Te (0)04Y6(0)ds (3.5)
mll—hl—m;zlhlz N
+ f X' ()Qsx(s)ds,
1—h()
mi I —%hl !
Va(x() :Z— [ [ srmiassa
o1 M J i i
I (3.6)
h12 —h|—*h|2
f i1 ($)Zx(s)dsdu,
/11—*h12
where

n0 =[O 10 Lo,

my-1

T
1(t)—[fti1h1xT(s)ds fizh x(s)yds - ﬁihl " T(s)ds],

my-1 T
Yy(r) = [ h hIZxT(s)ds ftlhh h12 x'(s)ds --- ﬁi;zl_mhlsz(S)dsl ,
Ts(s) = [ () AT (5= kb e (s =2y |

XT(S - hy) XT(S —hy — _h12) XT(S |

T
)T
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my=2

T
‘rsw)—[ [ 1 ¥ 2 f‘izh s e L) T<s>ds],

my

my =2 T
_ 0—hy T O—h1—~hi2 ey 6—h1— ,7212 hi2 o
'rﬁ(e)_[ fe_hl_%hnx (s)ds [, (ds -+ [ 7,5 x(9)ds |

my

Taking the derivative of V(x(r))|; yields

Vi(x(n)) = 20" () P(1)

3.7
= () Sym {11}, P12 ), G7

where

Fo=[ Y0 @ KTe-h) B0 B e -h) vio o ]
t—h =L hyy
Vlk(t): h(t)—hll—%hlz t—h(r) ? x(s)ds,

1 1—h(t)
vorl(f) = — L x(s)ds
2% () Bt o) J-h= iz (s)ds,

. h
Va(x(1) =Y5(OQ1 15 (1) = Y3 (1 — _1)Q1T3(t -—)
+ 3 (N0, (1) = T3 (1 = —)Q2T4( - —)

+ 5 (0035 (1) = T5(1 ~ —)Q3‘I'5(t -

3.8
D0 (1) = (1 - @)Qﬂé( _ @> .

1

+xT(t—h - his)
2

-1
h2)Qsx(t — hy —
2

— (1 = h(0)x" (t — h(1)) Qs x(t — h(t))
<& @),

my

V3(x(1)) = Z( % OR, x(r)+2< P 0230 - &~ B, (3.9)

hy f
= R;x(s)dsd,
wy = Z . AT ($)R;x(s)ds

my

h t— hl_uhlz
&y = Z 12 f 7 (5)Zux(s)ds.
k=

1—*/212
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Based on Lemma 2.3, we obtain:

mi
> "0 TTREN), (3.10)
i=1
mooo A his t—h—5Lhy,
@y > gT(t)(Z Y73 = ST 2S00 + — f A i1 (8)Zx(s)ds. (3.11)
k=1 2 Ji=h=55hi

Then, based on Lemma 2.7, we have:

_ k=1
h12 t—hy m2h12

M M
. 0z 2 0 T Zd L+ ) BT Z00000. (312)
2 t=h1= 5> b2 j=0 Jj=0

According to (3.7)—(3.12), we can obtain:

VOl < I (@l (o), (3.13)

where wy, k= 1,2,--- ,m, are defined in Theorem 3.1. For A(t) € [hy, h,], if (3.1) holds, then we have
Tl () < 0, ie., V(x(0)lx < 0. Thus, System (2.1) is asymptotically stable. This completes the
proof.

Remark 3.2. Compared with the method in [15], not only the delay interval [0, ;] but also the delay
interval [hy, h,] is decomposed into several subintervals equally. The purpose of such a method is to
make the constructed LKF includes more information of some state vectors. For example, the LKF
includes the term ft i N 'I’3T ()01 T3(s)ds, so the relationship among some state vectors

mjy

xT(@),x"(t = Lhy),- -+, x"(t — 2=hy) and x7(t — ;) are considered sufficiently, which may yield less

conservative results.

Remark 3.3. Theorem 3.1 presents an M-dependent stability criterion for System (1) based
on Lemma 2.7 and a new LKF. Clearly, the left-hand side of the inequality (3.1) is M—degree
polynomial matrices on i(f). When M = 1, the inequality (3.1) is linear. Thus, under this condition,
Theorem 3.1 can be solved by using the LMI toolbox. When M > 2, it is nonlinear on A(t), which is
not solvable directly. Thus, we employ Lemma 2.4 and Lemma 2.5 to transform it into LMIs for
M =2 and M = 3, respectively.

For M = 1, Theorem 3.1 is transformed into the following corollary easily.

Corollary 3.4. For given scalars h; > 0,h, > 0, u and @ € [0, 1] and nonnegative integers m; and
my, System (1) is asymptotically stable if there exist matrices P € S 0, e §™" 0, € §™",
Q;esS" ™ 0,es8" ™V OseS" RieS",i=1,2,--- ,mand Z € S", k=1,2,--- ,m, such that
the following LMIs hold for k = 1,2, -+ ,mj:

@ =Sym {H1T1PH12} + 115, 0111y, — 113,011y + 113, Qallas — 115, 05110y + I15, Q5105 — 15, 05115

T T T T
+ 1133, Qalls; — 113, O0ullzs + €, ,;O5€, 4 — (1- ”)ez(ml+m2)+2Q5€2(m1+m2)+2

my m

mp my 2
hy ) hip ) T= AT 5 & AT S &
+ — ) eoR;ey + — ) epZiey — 2R — 2 22+ X, X
;:1(’”1) oR;eo g:l(mz) 0Zkeo ;:1 i 1;:1 o Lz + 2 22y

(3.14)

— (1 + ), Zu Ty — (2 — )1E,, 2, 4 < 0.
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From Corollary 3.4, if u is unknown, a corollary is obtained by eliminating Qs.

Corollary 3.5. For given scalars 7; > 0,h, > 0 and a € [0, 1] and nonnegative integers m; and m;,
System (2.1) is asymptotically stable if there exist matrices P € S 0, e §™" 0, € §™",

Q; € S 0, e S R €S, i=1,2,---,mand Z; € S", k = 1,2,--- ,m, such that the
following LMIs hold for k = 1,2,--- ,my:

Sym {H1T1PH12} + 113, 01Ty — 115,011y, + 115, Q513 — 115, o115,
+ 115, Q5113 — 115, 05115, + 113, Q41053 — 115, 041154

mi ]’l my ]’l my _ my o U
+ ) (S eoRieo + Y () enZieg - Y SIRE - Y S1Z8, + 5[ 78,
-1 ™ = M i=1 k=1
- (1 + a)HflkaHMk - (2 - a)HIZkaHA‘Zk <0.

(3.15)

For M = 2, by Lemma 2.4, Theorem 3.1 is transformed into the following corollary easily.

Corollary 3.6. For given scalars i, > 0, h, > 0 and u and nonnegative integers m; and m,, System (2.1)
is asymptotically stable if there exist matrices P € S+ 0, e §™" 0, € §™", Q3 € §"",
Q,e8™ M 0ses? RieS",i=1,2,--- ,mandZ € S", k=1,2,--- ,m, such that the following
LMIs hold fork=1,2,--- ,my:

Oy < 0, (3.16)
Oy + Oy + Py < 0, (3.17)

1, o
(2—NP,/ + 0Dy + (ij +p)Q1 + Do <0, (3.18)

where

Do = @r — 13, ZiT Ly — 3H4{2_/<Z,{<ﬁ42ka
Dy = 10, Zil Lo + 3H12k%k1:[42k,
(DZk = —HZ]karLuk - 3H£2kaH42k’

o =Sym {HlTl Ple} + 113,011y, — 115, 0111y, + 115, Q5113 — 115, 051154 + I15, Q3115 — 115, 05113,

T T T T
+ I3, Qulls; — 115, Oullag + €, Os5€, 40 — (1 — u)ez(ml+m2)+2 O5€2m;+my)+2

(3.19)
mj I’l ny I’l mi ~ ny o o
+ D (S eoRieo + Y (S enZieo - Y SIRE - Y SIZ8 + {75,
-1 ™ = M2 i=1 k=1
/_)j: é__Nl’j: 1,2,--- ’2N-
Proof. For M = 2, based on (3.13), we can obtain:
Vx@))l < T O@ud (1), (3.20)
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where
_ T T T T T T T
@y =S ym {H11PH12} + 11, Q111 — 115, Q111 + 1155 Qo113 — 11, Qo 11o4 + I3, Q5113 — I3, Q5113

T T T T
+ H33 O4ll33 — H34Q4H34 + €m1+,~Q5€m1+i -(1- u)ez(m.+m2)+2Q5€2(m1+m2)+2

m my m my
hl 2 h12 2 TH &T 5 & &T 5 & (3.21)
+ (—) eoRieq + (—) epZiey — Zi RY; — X L+ X, 22
— (1 +a+ o), Zid My — (1 + B+ SO, Z 1y < 0.
Then, (3.20) can be rewritten as
V)l < ()@ Qo + @@y + Cop) (D). (3.22)

From Lemma 2.4, if (3.16)—(3.18) hold, then we obtain a’®; + a®; + Py < 0, i.e., V(x(t))|x < O.
This completes the proof.
From Corollary 3.6, if u is unknown, the following corollary can be obtained by eliminating Qs.

Corollary 3.7. For given scalars #; > 0 and /&, > 0 and nonnegative integers m; and m,, System (2.1)
is asymptotically stable if there exist matrices P € SV 0 e §™" 0, € §™", Q3 € §™ D",
Qs € S R e S"i=1,2,--- ,mand Z, € §", k = 1,2,--- ,my such that the following LMIs
hold fork=1,2,--- ,my:

Doy <0, (3.23)
DOy + Dy + Dy < 0, (3.24)

1 _ ) 1 — =2 T
(Z_ij + 07D + (ij + PO + Do <0, (3.25)

where @y, @y and p; = ’;—NI, j=1,2,---,2" are defined in Corollary 3.6.
Doy = @i — I ZiT g — 3H£2kzkﬁ42ka

@ =Sym {H1T1PH12} + H;QIHZ] - H§2Q1H22 + H; Oo1l3 — H§4Q2H24

+ 115, 03113 — 13,0515, + 115, Q4l133 — 115, 041154 (3.26)

mi

m h my h _ e A
+ E (m_ll)zeoRieo + } “(m_lj)zeOZkeo B z 42iTRi2i - E ,EZZka +2ZZ/<Z’<'
i=1 k=1 i=1 k=1

For M = 3, by Lemma 2.5, Theorem 3.1 is transformed into the following corollary easily.

Corollary 3.8. For given scalars #; > 0,4, > 0 and u and nonnegative integers m; and m,, System
(2.1) is asymptotically stable if there exist matrices P € S 0, € §™" 0, € §™", Q5 €
Siml_l)n, Q4 c Sg—mz—l)n’ Q5 c S:l_, R; € S:l" i=1,2,---,m, Z € S:l_, k=1,2,--- , My and F,F, €
RGUm+m)+HxQmi+m2)+4) gych that the following LMIs hold for k = 1,2, -+, my:

[(D(’k —F <0, (3.27)

* —F2—F2T
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(’I\)lk+F1+F1T+C,I\)0k %é)zk—F1+Fg

' b e T | <O (3.28)

where ¢y is defined in Corollary 3.4.

Do = g1 — 0}, Zi My — 4H22kzkﬁ42k,
®y =~ ZiTLag + 61045, ZiT Loy,
by = _HzlkaHMk - 4H£2kzkﬁ42k’
Dy = _HL/(ZkHAHk + HZZkaﬁ@k.

Proof. For M = 3, based on (3.13), we can obtain:

V(x(0) < @3l (1), (3.29)
where
@y =g — (1 +a+a* + ) Zdly — (1 + B+ 5 + B, Zi T (3.30)
Then, (3.29) can be rewritten as
V(x(t) < " ()@ O3y + &* Doy + ady + Do) (). (3.31)

From Lemma 2.4, if (3.27) and (3.28) hold, then we obtain a’®s; + @*®y; + ady; + Dy < 0, ie.,
V(x(t)x < 0. This completes the proof.
From Corollary 3.8, if u is unknown, a corollary is obtained by eliminating Qs.

Corollary 3.9. For given scalars #; > 0 and &, > 0 and nonnegative integers m; and m,, System (2.1)
is asymptotically stable if there exist matrices P € "+ 0, e §™" 0, € §™", Q3 € §"7",
0,8V RieS i=1,2,-,m,Z €S, k=1,2,--- ,myand F,, F, € REm+m)+HxQm+m)+4)
such that the following LMIs hold for k = 1,2, --- , my:

[mOk —F <0, (3.32)

* —F2—F2T

[®1k+F1+F{+AA(D0k %(/I\)Qk—F]-FFZT] 0 (3.33)

% é)3k - F2 - F;
where &, is defined in Corollary 3.7 and qADik, i = 1,2,3 are defined in Corollary 3.8.
Dy = G — 10}, Zi Ty — 4H£2kzkﬁ42k-
4. Numerical examples

In this section, two examples are given to demonstrate the advantages of the proposed criteria.

Example 4.1. Consider System (2.1) with

AIMS Mathematics Volume 8, Issue 1, 1139-1153.
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2 0 -1 0
A‘[o —0.9]’3‘[—1 —1]'

Our purpose was to find the upper bounds of 4, for given hy, m;, m, and u. The upper bounds of 4,
calculated by Corollary 3.6, Corollary 3.8 and methods in [2-5] are listed in Table 1. From Table 1, it
can be seen that the stability criteria presented in this paper are less conservative than those in [2—- 5].
For hy = 2 and u = 0.3, the upper bounds of &, calculated by Corollary 3.6 in this paper are 3.28
(my = 2,mp = 2) and 3.33 (m; = 3,m, = 3). Therefore, the conservativeness of the obtained results
will be reduced with the increase of m; and m,.

Table 1. Upper bound of £, for different values of /; and u.

h Method u=03 u=05 u=0.9 Number of variables
2 [2] 2.69 2.50 2.50 18
[3] 3.01 2.56 2.56 85
[4] 3.02 2.69 2.69 101
[5] 3.21 2.76 2.76 399
Corollary 3.6 (my; =2,m, =2) 3.28 2.83 2.83 96
Corollary 3.6 (m; =3,m, =3) 3.33 2.92 2.92 188
Corollary 3.8 (m; =2,m, =2) 3.31 2.90 2.90 252
Corollary 3.8 m; =3,m, =3) 3.36 2.94 2.94 460
3 2] 3.25 3.25 3.25 18
[3] 3.34 3.34 3.34 85
[4] 3.41 3.41 3.41 101
[5] 3.49 3.49 3.49 399
Corollary 3.6 m; =2,m, =2) 3.62 3.62 3.62 96
Corollary 3.6 m; =3,m, =3) 3.65 3.65 3.65 188
Corollary 3.8 (m; =2,m, =2) 3.64 3.64 3.64 252
Corollary 3.8 (m; =3,m, =3) 3.67 3.67 3.67 460

Example 4.2. Consider System (2.1) with

0 1 0 0.1
A_[—lo -1 ]’B_[O.l 0.2]'

Our purpose was to find the upper bounds of 4, for given h;, m; and m, and an unknown u. The
upper bounds of A, calculated by Corollary 3.7, Corollary 3.9 and methods in [20-22, 25, 28] are
listed in Table 2. From Table 2, it can be seen that the stability criteria presented in this paper were
less conservative than those in [20-22,25,28]. For h; = 1, the upper bounds of h, calculated by
Corollary 3.7 in this paper are 3.46 (m; = 2,m, = 2) and 3.49 (m; = 3,m, = 3). Therefore, the
conservativeness of the obtained results will be reduced with the increase of m; and m,.
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Table 2. Upper bound of 4, for different values of #;.

h 00 04 0.7 1.0 Number of variables

[20] 1.59 2.01 241 2.62 49

[21] 1.64 2.13 270 2.96 96

[25] 1.86 2.28 2.69 2.89 93

[22] 239 2.76 3.15 341 627

[28] 2.54 290 323 344 424
Corollary 3.7 (m; =2,m, =2) 2.58 2.93 3.26 3.46 93
Corollary 3.7 (m; =3,m, =3) 2.65 2.98 3.29 3.49 185
Corollary 3.9 (m; =2,m, =2) 2.60 2.95 3.27 347 249
Corollary 3.9 (my =3,m, =3) 2.68 2.30 3.31 3.50 457

5. Conclusions

In this paper, some new integral inequalities were introduced without using any reciprocally convex
method. Some less conservative stability criteria were obtained based on these new integral inequalities
and a new delay-partitioning approach. Finally, two numerical examples were provided to show the
effectiveness of the presented method. Furthermore, how to decompose the delay interval needs to be
further studied.
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