Research article

Uniqueness and existence of positive periodic solutions of functional differential equations

  • Received: 22 May 2022 Revised: 04 September 2022 Accepted: 23 September 2022 Published: 09 October 2022
  • MSC : 34K13

  • In this paper, some new findings on the uniqueness and existence of positive periodic solutions to first-order functional differential equations are presented. These equations have wide applications in a variety of fields. The most important feature of our argument is that we use the theory of Hilbert's metric to prove the uniqueness of the positive periodic solution when $ q=-1 $ and $ -1 < q < 0 $. In addition, we also investigate the existence results of positive periodic solutions by applying a fixed point theorem for completely continuous maps in a cone. Two examples demonstrate our findings.

    Citation: Jiaqi Xu, Chunyan Xue. Uniqueness and existence of positive periodic solutions of functional differential equations[J]. AIMS Mathematics, 2023, 8(1): 676-690. doi: 10.3934/math.2023032

    Related Papers:

  • In this paper, some new findings on the uniqueness and existence of positive periodic solutions to first-order functional differential equations are presented. These equations have wide applications in a variety of fields. The most important feature of our argument is that we use the theory of Hilbert's metric to prove the uniqueness of the positive periodic solution when $ q=-1 $ and $ -1 < q < 0 $. In addition, we also investigate the existence results of positive periodic solutions by applying a fixed point theorem for completely continuous maps in a cone. Two examples demonstrate our findings.



    加载中


    [1] M. C. Mackey, L. Glass, Oscillation theory of differential equations with deviating arguments, Dekker, New York, 1987.
    [2] Y. Kuang, Delay differential equations: With applications in population dynamics, Boston: Academic Press, 1993.
    [3] B. S. Lalli, B. G. Zhang, On a periodic delay population model, Quart. Appl. Math. , 52 (1994), 35–42. https://doi.org/10.1090/qam/1262316 doi: 10.1090/qam/1262316
    [4] S. H. Saker, S. Agarwal, Oscillation and global attractivity in a periodic Nicholson's blowflies model, Math. Comput. Model. , 35 (2002), 719–731. http://dx.doi.org/10.1016/S0895-7177(02)00043-2 doi: 10.1016/S0895-7177(02)00043-2
    [5] S. N. Chow, Remarks on one dimensional delay-differential equations, J. Math. Anal. Appl. , 41 (1973), 426–429. http://dx.doi.org/10.1016/0022-247X(73)90217-5 doi: 10.1016/0022-247X(73)90217-5
    [6] H. I. Freedman, J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal. , 23 (1992), 689–701. http://dx.doi.org/10.1137/0523035 doi: 10.1137/0523035
    [7] Y. Kuang, H. L. Smith, Periodic solutions of differential delay equations with threshold-type delays, oscillations and dynamics in delay equations, Contemp. Math. , 129 (1992), 153–176. http://dx.doi.org/10.1090/conm/129/1174140 doi: 10.1090/conm/129/1174140
    [8] Y. H. Fan, W. T. Li, L. L. Wang, Periodic solutions of delayed ratio-dependent predator-prey models with monotonic or nonmonotonic functional response, Nonlinear Anal. , 129 (1992), 153–176. https://doi.org/10.1016/S1468-1218(03)00036-1 doi: 10.1016/S1468-1218(03)00036-1
    [9] D. Q. Jiang, J. J. Wei, B. Zhang, Positive periodic solutions of functional differential equations and population models, Electron. J. Differ. Eq. , 71 (2002), 1–13.
    [10] L. L. Wang, W. T. Li, Periodic solutions and permanence for a delayed nonautonomous ratio-dependent predator-prey model with Holling type functional response, J. Comput. Appl. Math., 162 (2004), 341–357. http://dx.doi.org/10.1016/j.cam.2003.06.005 doi: 10.1016/j.cam.2003.06.005
    [11] Y. S. Liu, Periodic boundary value problems for first order functional differential equations with impulse, J. Comput. Appl. Math., 223 (2009), 27–39. http://dx.doi.org/10.1016/j.cam.2007.12.015 doi: 10.1016/j.cam.2007.12.015
    [12] J. L. Li, J. H. Shen, New comparison results for impulsive functional differential equations, Appl. Math. Lett., 23 (2010), 487–493. http://dx.doi.org/10.1016/j.aml.2009.12.010 doi: 10.1016/j.aml.2009.12.010
    [13] J. R. Graef, L. J. Kong, Existence of multiple periodic solutions for first order functional differential equations, Math. Comput. Mod., 54 (2011), 2962–2968. http://dx.doi.org/10.1016/j.mcm.2011.07.018 doi: 10.1016/j.mcm.2011.07.018
    [14] X. M. Zhang, M. Q. Feng, Multi-parameter, impulsive effects and positive periodic solutions of first-order functional differential equations, Bound. Value Probl., 2015 (2015), 137. http://dx.doi.org/10.1186/s13661-015-0401-x doi: 10.1186/s13661-015-0401-x
    [15] S. S. Cheng, G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differ. Eq., 59 (2001), 1–8. http://dx.doi.org/10.1111/1468-0262.00185 doi: 10.1111/1468-0262.00185
    [16] H. Y. Wang, Positive periodic solutions of functional differential equations, J. Differential Equations, 202 (2004), 354–366. http://dx.doi.org/10.1016/j.jde.2004.02.018 doi: 10.1016/j.jde.2004.02.018
    [17] W. X. Liu, W. T. Li, Existence and uniqueness of positive periodic solutions of functional differential equations, J. Math. Anal. Appl., 293 (2004), 28–39. http://dx.doi.org/10.1016/j.jmaa.2003.12.012 doi: 10.1016/j.jmaa.2003.12.012
    [18] D. Hilbert, Ueber die gerade Linie als k$\ddot{u}$rzeste Verbindung zweier Punkte, Math. Ann., 46 (1970), 91–96. http://dx.doi.org/10.1007/BF02096204 doi: 10.1007/BF02096204
    [19] G. Birkhoff, Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc., 85 (1957), 219–227. http://dx.doi.org/10.2307/1992971 doi: 10.2307/1992971
    [20] F. Klein, Ueber die sogenannte nicht-euklidische geometrie, J. Math. Ann., 4 (1871), 573–625. http://dx.doi.org/10.1007/BF02100583 doi: 10.1007/BF02100583
    [21] P. J. Bushell, The Cayley-Hilbert metric and positive operators, Linear Algebra Appl., 84 (1986), 271–280. https://doi.org/10.1016/0024-3795(86)90319-8 doi: 10.1016/0024-3795(86)90319-8
    [22] M. J. Huang, C. Y. Huang, T. M. Tsai, Applications of Hilbert's projective metric to a class of positive nonlinear operators, Linear Algebra Appl., 413 (2006), 202–211. http://dx.doi.org/10.1016/j.laa.2005.08.024 doi: 10.1016/j.laa.2005.08.024
    [23] K. Koufany, Application of Hilbert's projective metric on symmetric cones, Acta Math. Sin., 22 (2006), 1467–1472. http://dx.doi.org/10.1007/s10114-005-0755-6 doi: 10.1007/s10114-005-0755-6
    [24] D. J. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, New York: Academic Press, 1988. https://doi.org/10.1016/C2013-0-10750-7
    [25] P. J. Bushell, Hilbert's metric and positive contraction mappings in a Banach space, Arch. Ration. Mech. Anal., 52 (1973), 330–338. http://dx.doi.org/10.1007/BF00247467 doi: 10.1007/BF00247467
    [26] P. J. Bushell, On a class of Volterra and Fredholm nonlinear integral equations, Math. Proc. Camb. Phil. Soc., 79 (1976), 329–335. http://dx.doi.org/10.1017/s0305004100052324 doi: 10.1017/s0305004100052324
    [27] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620–709. http://dx.doi.org/10.1137/1018114 doi: 10.1137/1018114
    [28] A. J. B. Potter, Existence theorem for a non-linear integral equation, J. London Math. Soc., 1 (1975), 7–10. http://dx.doi.org/10.1112/jlms/s2-11.1.7 doi: 10.1112/jlms/s2-11.1.7
    [29] A. Meir, E. B. Keller, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. http://dx.doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1589) PDF downloads(143) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog