Research article Special Issues

Approximate solutions for a class of nonlinear Volterra-Fredholm integro-differential equations under Dirichlet boundary conditions

  • Received: 11 August 2022 Revised: 22 September 2022 Accepted: 26 September 2022 Published: 08 October 2022
  • MSC : 45B05, 45D05, 45J05, 45L05

  • This paper studies the solvability of boundary value problems for a nonlinear integro-differential equation. Converting the problem to an equivalent nonlinear Volterra-Fredholm integral equation (NVFIE) is driven by using a suitable transformation. To investigate the existence and uniqueness of continuous solutions for the NVFIE under certain given conditions, the Krasnoselskii fixed point theorem and Banach contraction principle have been used. Finally, we numerically solve the NVFIE and study the rate of convergence using methods based on applying the modified Adomian decomposition method, and Liao's homotopy analysis method. As applications, some examples are provided to support our work.

    Citation: Hawsar Ali Hama Rashid, Mudhafar Fattah Hama. Approximate solutions for a class of nonlinear Volterra-Fredholm integro-differential equations under Dirichlet boundary conditions[J]. AIMS Mathematics, 2023, 8(1): 463-483. doi: 10.3934/math.2023022

    Related Papers:

  • This paper studies the solvability of boundary value problems for a nonlinear integro-differential equation. Converting the problem to an equivalent nonlinear Volterra-Fredholm integral equation (NVFIE) is driven by using a suitable transformation. To investigate the existence and uniqueness of continuous solutions for the NVFIE under certain given conditions, the Krasnoselskii fixed point theorem and Banach contraction principle have been used. Finally, we numerically solve the NVFIE and study the rate of convergence using methods based on applying the modified Adomian decomposition method, and Liao's homotopy analysis method. As applications, some examples are provided to support our work.



    加载中


    [1] C. Zhang, S. Vandewalle, Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization, J. Comput. Appl. Math., 164–165 (2004), 797–814. https://doi.org/10.1016/j.cam.2003.09.013 doi: 10.1016/j.cam.2003.09.013
    [2] J. Levin, J. Nohel, On a system of integro-differential equations occurring in reactor dynamics, Arch. Rational Mech. Anal., 11 (1962), 210–243. https://doi.org/10.1007/BF00253938 doi: 10.1007/BF00253938
    [3] W. L. Wendland, E. Stephan, G. C. Hsiao, E. Meister, On the integral equation method for the plane mixed boundary value problem of the Laplacian, Math. Method. Appl. Sci., 1 (1979), 265–321. https://doi.org/10.1002/mma.1670010302 doi: 10.1002/mma.1670010302
    [4] M. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and continuous nonlinear Schrodinger systems, Cambridge University Press, 2004.
    [5] J. H. He, Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73–79. https://doi.org/10.1016/S0096-3003(01)00312-5 doi: 10.1016/S0096-3003(01)00312-5
    [6] J. H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350 (2006), 87–88. 10.1016/j.physleta.2005.10.005 doi: 10.1016/j.physleta.2005.10.005
    [7] G. A. El-Latif, A homotopy technique and a perturbation technique for nonlinear problems, Appl. Math. Comput., 169 (2005), 576–588. https://doi.org/10.1016/j.amc.2004.09.076 doi: 10.1016/j.amc.2004.09.076
    [8] E. H. Lieb, A non-perturbation method for non-linear field theories, Proc. R. Soc. Lond. A, 241 (1957), 339–363. https://doi.org/10.1098/rspa.1957.0131 doi: 10.1098/rspa.1957.0131
    [9] M. H. Holmes, Introduction to perturbation methods, New Yourk: Springer, 2013. https://doi.org/10.1007/978-1-4614-5477-9
    [10] K. Atkinson, F. Potra, The discrete Galerkin method for nonlinear integral equations, J. Integral Equ. Appl., 1 (1988), 17–54.
    [11] S. Yousefi, M. Razzaghi, Legendre wavelets method for the nonlinear volterra–fredholm integral equations, Math. Comput. Simulat., 70 (2005), 1–8. https://doi.org/10.1016/j.matcom.2005.02.035 doi: 10.1016/j.matcom.2005.02.035
    [12] M. Guedda, M. Kirane, A note on nonexistence of global solutions to a nonlinear integral equation, Bull. Belg. Math. Soc. Simon Stevin, 6 (1999), 491–497. https://doi.org/10.36045/bbms/1103055577 doi: 10.36045/bbms/1103055577
    [13] K. Maleknejad, H. Almasieh, M. Roodaki, Triangular functions (TF) method for the solution of nonlinear Volterra-Fredholm integral equations, Commun. Nonlinear Sci., 15 (2010), 3293–3298. https://doi.org/10.1016/j.cnsns.2009.12.015 doi: 10.1016/j.cnsns.2009.12.015
    [14] M. M. El-Borai, M. A. Abdou, M. Youssef, On adomian's decomposition method for solving nonlocal perturbed stochastic fractional integro-differential equations, Life Sci. J., 10 (2013), 550–555.
    [15] S. Mashayekhi, M. Razzaghi, O. Tripak, Solution of the nonlinear mixed volterrafredholm integral equations by hybrid of block-pulse functions and bernoulli polynomials, Sci. World J., 2014 (2014), 413623. https://doi.org/10.1155/2014/413623 doi: 10.1155/2014/413623
    [16] S. Deniz, Optimal perturbation iteration technique for solving nonlinear volterrafredholm integral equations, Math. Method. Appl. Sci., 2020. https://doi.org/10.1002/mma.6312
    [17] M. Abdou, M. I. Youssef, On an approximate solution of a boundary value problem for a nonlinear integro-differential equation, Arab J. Basic Appl. Sci., 28 (2021), 386–396. https://doi.org/10.1080/25765299.2021.1982500 doi: 10.1080/25765299.2021.1982500
    [18] M. Abdou, M. I. Youssef, On a method for solving nonlinear integro differential equation of order $n$, J. Math. Comput. Sci-JM. 25 (2022), 322–340. https://doi.org/10.22436/jmcs.025.04.03 doi: 10.22436/jmcs.025.04.03
    [19] A. M. Abed, M. Younis, A. A. Hamoud, Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM, Nonlinear Funct. Anal. Appl., 27 (2022), 189–201. https://doi.org/10.22771/NFAA.2022.27.01.12 doi: 10.22771/NFAA.2022.27.01.12
    [20] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, Singapore: World Scientific, 2016.
    [21] D. R. Smart, Fixed point theorem, Cambridge University Press, 1980.
    [22] B. S.Thomson, J. B. Bruckner, A. M. Bruckner, Elementary real analysis, 2001.
    [23] A. Kilbas, H. M. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [24] A. Wazwaz, A new algorithm for calculating adomian polynomials for nonlinear operators, Appl. Math. Comput., 111 (2000), 33–51. https://doi.org/10.1016/S0096-3003(99)00063-6 doi: 10.1016/S0096-3003(99)00063-6
    [25] S. Liao, Homotopy analysis method in nonlinear differential equations, Springer-Verlag GmbH Berlin Heidelberg, 2012. https://doi.org/10.1007/978-3-642-25132-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1816) PDF downloads(187) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog