Research article

Oscillation criteria for sublinear and superlinear first-order difference equations of neutral type with several delays

  • Received: 02 February 2022 Revised: 17 June 2022 Accepted: 18 June 2022 Published: 01 August 2022
  • MSC : 34C10, 39A10, 39A12, 39A21

  • The purpose of this paper is to investigate the oscillatory behaviour of a class of first-order sublinear and superlinear neutral difference equations. Some conditions are established by applying Banach's Contraction mapping principle, Knaster-Tarski fixed point theorem and using several inequalities. We provide some examples to illustrate the outreach of the main results.

    Citation: Mohamed Altanji, Gokula Nanda Chhatria, Shyam Sundar Santra, Andrea Scapellato. Oscillation criteria for sublinear and superlinear first-order difference equations of neutral type with several delays[J]. AIMS Mathematics, 2022, 7(10): 17670-17684. doi: 10.3934/math.2022973

    Related Papers:

  • The purpose of this paper is to investigate the oscillatory behaviour of a class of first-order sublinear and superlinear neutral difference equations. Some conditions are established by applying Banach's Contraction mapping principle, Knaster-Tarski fixed point theorem and using several inequalities. We provide some examples to illustrate the outreach of the main results.



    加载中


    [1] R. P. Agarwal, Difference equations and inequalities: Theory, methods, and applications, Marcel Dekker, New York, 2000.
    [2] R. P. Agarwal, M. Bohner, S. R. Grace, D. O'Regan, Discrete oscillation theory, Hindawi Publishing Corporation, New York, 2005.
    [3] T. Candan, Existence of nonoscillatory solutions to first order neutral differential equations, Electon. J. Differ. Equ., 2016 (2016), 1–11.
    [4] G. E. Chatzarakis, G. N. Miliaras, Asymptotic behaviour in neutral difference equations with variable coefficients and more than one day arguments, J. Math. Comput. Sci., 1 (2012), 32–52.
    [5] L. H. Erbe, Q. Kong, B. G. Zhang, Oscillation theory for functional differential equations, Marcel Dekker Inc., New York, 1995.
    [6] Y. Gao, G. Zhang, Oscillation of nonlinear first order neutral difference equations, Appl. Math. E-Notes, 1 (2001), 5–10.
    [7] D. A. Georgiou, E. A Grove, G. Ladas, Oscillations of neutral difference equations, Appl. Anal., 33 (1989), 243–253. https://doi.org/10.1080/00036818908839876 doi: 10.1080/00036818908839876
    [8] G. Gomathi Jawahar, Oscillation properties of certain types of first order neutral delay difference equations, Int. J. Sci. Eng. Res., 4 (2013), 1197–1201.
    [9] I. Györi, G. Ladas, Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford, 1991.
    [10] J. R. Graef, E. Thandapani, S. Elizabeth, Oscillation of first order nonlinear neutral difference equations, Indian J. Pure Appl. Math., 36 (2005), 503–512.
    [11] B. Karpuz, Sharp conditions for oscillation and nonoscillation of neutral difference equations, In: M. Bohner, S. Siegmund, R. Simon Hilscher, P. Stehlik, Difference equations and discrete dynamical systems with applications, ICDEA 2018, Springer Proceedings in Mathematics & Statistics, Vol. 312, Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-35502-9_11
    [12] V. Kolmanovski, A. Myshkis, Introduction to the theory and applications of functional differential equations, Kluwer, Dordrecht, 1999.
    [13] F. Kong, Existence of nonoscillatory solutions of a kind of first order neutral differential equation, Math. Commun., 22 (2017), 151–164.
    [14] X. Lin, Oscillation of solutions of neutral difference equations with a nonlinear neutral term, Comput. Math. Appl., 52 (2006), 439–448. https://doi.org/10.1016/j.camwa.2006.02.009 doi: 10.1016/j.camwa.2006.02.009
    [15] Q. Li, C. Wang, F. Li, H. Liang, Z. Zhang, Oscillation of sublinear difference equations with positive neutral term, J. Appl. Math. Comput., 20 (2006), 305–314. https://doi.org/10.1007/BF02831940 doi: 10.1007/BF02831940
    [16] A. Murugesan, R. Suganthi, Oscillation behaviour of first order nonlinear functional neutral delay difference equations, Int. J. Differ. Equ., 12 (2017), 1–13.
    [17] A. D. Myschkis, Lineare Differentialgleichungen mit nacheilendem Argument, VEB Deutscher Verlag der Wissenschaften, Berlin, 1955.
    [18] S. S. Santra, D. Baleanu, K. M. Khedher, O. Moaaz, First-order impulsive differential systems: Sufficient and necessary conditions for oscillatory or asymptotic behavior, Adv. Differ. Equ., 2021 (2021), 283 https://doi.org/10.1186/s13662-021-03446-1 doi: 10.1186/s13662-021-03446-1
    [19] O. Öcalan, Oscillation criteria for systems of difference equations with variable coefficients, Appl. Math. E-Notes, 6 (2006), 119–125.
    [20] O. Öcalan, O. Duman, Oscillation analysis of neutral difference equations with delays, Chaos, Solitons, Fract., 39 (2009), 261–270. https://doi.org/10.1016/j.chaos.2007.01.094 doi: 10.1016/j.chaos.2007.01.094
    [21] O. Öcalan, Linearized oscillation of nonlinear difference equation with advanced arguments, Arch. Math. (Brno), 45 (2009), 203–212.
    [22] N. Parhi, A. K. Tripathy, Oscillation of forced nonlinear neutral delay difference equations of first order, Czech. Math. J., 53 (2003), 83–101.
    [23] N. Parhi, A. K. Tripathy, Oscillation of a class neutral difference equations of higher order, J. Math. Anal. Appl., 28 (2003), 756–774. https://doi.org/10.1016/S0022-247X(03)00298-1 doi: 10.1016/S0022-247X(03)00298-1
    [24] H. Péics, Positive solutions of neutral delay difference equations, Novi. Sad. J. Math., 35 (2005), 111–122.
    [25] S. H. Saker, M. A. Arahet, New oscillation criteria of first order neutral delay difference equations of Emden-Fowler type, J. Comput. Anal. Appl., 29 (2021), 252–265.
    [26] S. S. Santra, D. Majumder, R. Bhattacharjee, T. Ghosh, Asymptotic behaviour for first-order difference equations I, In: Applications of networks, sensors and autonomous systems analytics, Studies in Autonomic, Data-driven and Industrial Computing, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-7305-4_4
    [27] X. H. Tang, X. Lin, Necessary and sufficient conditions for oscillation of first-order nonlinear neutral difference equations, Comput. Math. Appl., 55 (2008), 1279–1292. https://doi.org/10.1016/j.camwa.2007.06.009 doi: 10.1016/j.camwa.2007.06.009
    [28] M. K. Yildiz, H. Öğünmez, Oscillatory results of higher order nonlinear neutral delay difference equations with a nonlinear neutral term, Hacet. J. Math. Stat., 43 (2014), 809–814.
    [29] G. Zhang, Oscillation for nonlinear neutral difference equations, Appl. Math. E-Notes, 2 (2002), 22–24.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1402) PDF downloads(127) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog