Research article Special Issues

New exploration of operators of fractional neutral integro-differential equations in Banach spaces through the application of the topological degree concept

  • Received: 20 February 2022 Revised: 10 June 2022 Accepted: 16 June 2022 Published: 27 June 2022
  • MSC : 34A08, 37C25, 34K10, 34K37

  • In this paper, we analyze the behavior of the neutral integro-differential equations of fractional order including the Caputo-Hadamard fractional derivative. The results and solutions are obtained using the topological degree method. Furthermore, some specific numerical examples are given to ascertain the wide applicability and high efficiency of the suggested fixed point technique.

    Citation: Samy A. Harisa, Chokkalingam Ravichandran, Kottakkaran Sooppy Nisar, Nashat Faried, Ahmed Morsy. New exploration of operators of fractional neutral integro-differential equations in Banach spaces through the application of the topological degree concept[J]. AIMS Mathematics, 2022, 7(9): 15741-15758. doi: 10.3934/math.2022862

    Related Papers:

  • In this paper, we analyze the behavior of the neutral integro-differential equations of fractional order including the Caputo-Hadamard fractional derivative. The results and solutions are obtained using the topological degree method. Furthermore, some specific numerical examples are given to ascertain the wide applicability and high efficiency of the suggested fixed point technique.



    加载中


    [1] S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027–1045. https://doi.org/10.1515/fca-2018-0056 doi: 10.1515/fca-2018-0056
    [2] T. Abdeljawad, F. Jarad, D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A-Math., 51 (2008), 1775–1786. https://doi.org/10.1007/s11425-008-0068-1 doi: 10.1007/s11425-008-0068-1
    [3] R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
    [4] A. Ardjouni, A. Djoudi, Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions, Open J. Math. Anal., 3 (2019), 62–69. http://dx.doi.org/10.30538/psrp-oma2019.0033 doi: 10.30538/psrp-oma2019.0033
    [5] A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Math., 4 (2019), 1101–1113. http://dx.doi.org/10.2306/scienceasia1513-1874.2017.43.201 doi: 10.2306/scienceasia1513-1874.2017.43.201
    [6] Y. Arioua, N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional diffential equations, Surv. Math. Appl., 12(2017), 103–115. http://dx.doi.org/10.31197/atnaa.419517 doi: 10.31197/atnaa.419517
    [7] D. Baleanu, O. G. Mustafa, On the Global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., 59 (2010), 1835–1841. http://dx.doi.org/10.1016/j.camwa.2009.08.028 doi: 10.1016/j.camwa.2009.08.028
    [8] B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217 (2010), 480–487. https://doi.org/10.1016/j.amc.2010.05.080 doi: 10.1016/j.amc.2010.05.080
    [9] M. Benchohra, S. Bouriah, J. J. Nieto, Existence of periodic solutions for nonlinear implicit Hadamard's fractional differential equations, RACSAM, 112 (2018), 25–35. https://doi.org/10.1007/s13398-016-0359-2 doi: 10.1007/s13398-016-0359-2
    [10] W. Benhamida, J. R. Graef, S. Hamani, Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions, Fract. Differ. Calc., 8 (2018), 165–176. http://dx.doi.org/10.7153/fdc-2018-08-10 doi: 10.7153/fdc-2018-08-10
    [11] W. Benhamida, S. Hamani, J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 138–145. http://dx.doi.org/10.31197/atnaa.419517 doi: 10.31197/atnaa.419517
    [12] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. https://doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5
    [13] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamardtype fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. https://doi.org/10.1016/S0022-247X(02)00001-X doi: 10.1016/S0022-247X(02)00001-X
    [14] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. https://doi.org/10.1016/S0022-247X(02)00066-5 doi: 10.1016/S0022-247X(02)00066-5
    [15] C. Maji, F. Al Basir, D. Mukherjee, C. Ravichandran, K. S. Nisar, COVID-19 propagation and the usefulness of awareness based control measures: A mathematical model with delay, AIMS Math., 7 (2022), 12091–12105. https://doi.org/10.3934/math.2022672 doi: 10.3934/math.2022672
    [16] C. Derbazi, H. Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Math., 5 (2020), 2694–2709. https://doi.org/10.3934/math.2020174 doi: 10.3934/math.2020174
    [17] K. Deimling, Nonlinear functional analysis, Springer, Berlin, Heidelberg, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [18] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [19] M. Feng, X. Zhang, W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value Probl., 2011 (2011), 720702. https://doi.org/10.1155/2011/720702 doi: 10.1155/2011/720702
    [20] J. R. Graef, N. Guerraiche, S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Stud. Univ. Babes-Bolyai Math., 62 (2017), 427–438. http://dx.doi.org/10.24193/subbmath.2017.4.02 doi: 10.24193/subbmath.2017.4.02
    [21] J. Hadamard, Essai sur létude des fonctions donnees par leur developpment de Taylor, J. Mat. Pure Appl., 8 (1892), 101–186.
    [22] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [23] F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comenianae, 75 (2006), 233–240.
    [24] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [25] K. Jothimani, N. Valliammal, C. Ravichandran, Existence result for a neutral fractional integrodifferential equation with state dependent delay, J. Appl. Nonlinear Dyn., 7 (2018), 371–381. http://dx.doi.org/10.5890/JAND.2018.12.005 doi: 10.5890/JAND.2018.12.005
    [26] K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Soliton. Fract., 146 (2021), 110915. https://doi.org/10.1016/j.chaos.2021.110915 doi: 10.1016/j.chaos.2021.110915
    [27] K. S. Nisar, K. Jothimani, C. Ravichandran, D. Baleanu, D. Kumar, New approach on controllability of Hilfer fractional derivatives with nondense domain, AIMS Math., 7 (2022), 10079–10095. https://doi.org/10.3934/math.2022561 doi: 10.3934/math.2022561
    [28] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [29] R. Murugesu, V. Vijayakumar, J. P. C. D. Santos, Existence of mild solutions for nonlocal Cauchy problem for fractional neutral integro-differential equation with unbounded delay, Commun. Math. Anal., 14 (2013), 59–71.
    [30] K. Kavitha, V. Vijayakumar, R. Udhayakumar, C. Ravichandran, Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness, Asian J. Control, 24 (2021), 1406–1415. https://doi.org/10.1002/asjc.2549 doi: 10.1002/asjc.2549
    [31] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
    [32] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, North-Holland Mathematics Studies, Elsevier, 2006.
    [33] L. Lv, J. Wang, W. Wei, Existence and uniqueness results for fractional differential equations with boundary value conditions, Opusc. Math., 31 (2011), 629–643. http://dx.doi.org/10.7494/OpMath.2011.31.4.629 doi: 10.7494/OpMath.2011.31.4.629
    [34] J. Mawhin, Topological degree methods in nonlinear boundary value problems, American Mathematical Society, 1979.
    [35] M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017 (2017), 161. https://doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
    [36] S. M. Momani, A. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Comput. Math. Appl., 52 (2006), 459–470. https://doi.org/10.1016/j.camwa.2006.02.011 doi: 10.1016/j.camwa.2006.02.011
    [37] Q. Ma, R. Wang, J. Wang, Y. Ma, Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Comput., 257 (2015), 436–445. http://dx.doi.org/10.1016/j.amc.2014.10.084 doi: 10.1016/j.amc.2014.10.084
    [38] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999.
    [39] C. Promsakon, E. Suntonsinsoungvon, S. K. Ntouyas, J. Tariboon, Impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function, Adv. Differ. Equ., 2019 (2019), 1–17. https://doi.org/10.1186/s13662-019-2416-6 doi: 10.1186/s13662-019-2416-6
    [40] C. Ravichandran, D. Baleanu, Existence results for fractional neutral functional integro-differential evolution equations with infinite delay in Banach spaces, Adv. Differ. Equ., 2013 (2013), 215. https://doi.org/10.1186/1687-1847-2013-215 doi: 10.1186/1687-1847-2013-215
    [41] C. Ravichandran, K. Jothimani, K. S. Nisar, E. E. Mahmoud, I. S. Yahia, An interpretation on controllability of Hilfer fractional derivative with nondense domain, Alex. Eng. J., 61 (2022), 9941–9948. https://doi.org/10.1016/j.aej.2022.03.011 doi: 10.1016/j.aej.2022.03.011
    [42] J. P. C. D. Santos, M. M. Arjunan, C. Cuevas, Existence results for fractional neutral integro-differential equations with state-dependent delay, Comput. Math. Appl., 62 (2011), 1275–1283. https://doi.org/10.1016/j.camwa.2011.03.048 doi: 10.1016/j.camwa.2011.03.048
    [43] K. Shah, H. Khalil, R. A. Khan, Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations, Chaos Soliton. Frac., 77 (2015), 240–246. https://doi.org/10.1016/j.chaos.2015.06.008 doi: 10.1016/j.chaos.2015.06.008
    [44] K. Shah, R. A. Khan, Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory, Numer. Funct. Anal. Optim., 37 (2016), 887–899. https://doi.org/10.1080/01630563.2016.1177547 doi: 10.1080/01630563.2016.1177547
    [45] K. Shah, W. Hussain, Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory, Numer. Funct. Anal. Optim., 40 (2019), 1355–1372.
    [46] J. Tariboon, A. Cuntavepanit, S. K. Ntouyas, W. Nithiarayaphaks, Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, J. Funct. Space, 2018 (2018), 6974046. https://doi.org/10.1155/2018/6974046 doi: 10.1155/2018/6974046
    [47] N. Valliammal, C. Ravichandran, Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces, Nonlinear Stud., 25 (2018), 159–171.
    [48] P. Veeresha, D. G. Prakasha, C. Ravichandran, L. Akinyemi, K. S. Nisar, Numerical approach to generalized coupled fractional Ramani equations, Int. J. Mod. Phys. B, 36 (2022), 2250047. https://doi.org/10.1142/S0217979222500473 doi: 10.1142/S0217979222500473
    [49] Z. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inf., 30 (2012), 443–462. https://doi.org/10.1093/imamci/dns033 doi: 10.1093/imamci/dns033
    [50] Z. Yan, H. Zhang, Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with state-dependent delay, Electron. J. Differ. Equ., 2013 (2013), 1–29.
    [51] J. R. Wang, Y. Zhou, W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Funct. Anal. Optim., 33 (2012), 216–238. https://doi.org/10.1080/01630563.2011.631069 doi: 10.1080/01630563.2011.631069
    [52] Y. Zhou, F. Jiao, J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal.: Theory Methods Appl., 71 (2009), 3249–3256. https://doi.org/10.1016/j.na.2009.01.202 doi: 10.1016/j.na.2009.01.202
    [53] Y. Zhou, F. Jiao, J. Li, Existence and uniqueness for p-type fractional neutral differential equations, Nonlinear Anal.: Theory Methods Appl., 71 (2009), 2724–2733. http://dx.doi.org/10.1016/j.na.2009.01.105 doi: 10.1016/j.na.2009.01.105
    [54] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063–1077. https://doi.org/10.1016/j.camwa.2009.06.026 doi: 10.1016/j.camwa.2009.06.026
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1465) PDF downloads(112) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog