Research article Special Issues

Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings

  • Received: 11 March 2022 Revised: 03 June 2022 Accepted: 13 June 2022 Published: 24 June 2022
  • MSC : 26A33, 26A51, 26D10

  • The notions of convex mappings and inequalities, which form a strong link and are key parts of classical analysis, have gotten a lot of attention recently. As a familiar extension of the classical one, interval-valued analysis is frequently used in the research of control theory, mathematical economy and so on. Motivated by the importance of convexity and inequality, our aim is to consider a new class of convex interval-valued mappings (I-V⋅Ms) known as left and right (L-R) $ \mathfrak{J} $-convex interval-valued mappings through pseudo-order relation ($ {\le }_{p} $) or partial order relation, because in interval space, both concepts coincide, so this order relation is defined in interval space. By using this concept, first we obtain Hermite-Hadamard (HH-) and Hermite-Hadamard-Fejér (HH-Fejér) type inequalities through pseudo-order relations via the Riemann-Liouville fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for L-R $ \mathfrak{J} $-convex- I-V⋅Ms and their variant forms as special cases. Under some mild restrictions, we have proved that the inclusion relation "$ \subseteq $" is coincident to pseudo-order relation "$ {\le }_{p} $" when the I-V⋅M is L-R $ \mathfrak{J} $-convex or L-R $ \mathfrak{J} $-concave. Results obtained in this paper can be viewed as an improvement and refinement of classical known results.

    Citation: Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings[J]. AIMS Mathematics, 2022, 7(8): 15659-15679. doi: 10.3934/math.2022857

    Related Papers:

  • The notions of convex mappings and inequalities, which form a strong link and are key parts of classical analysis, have gotten a lot of attention recently. As a familiar extension of the classical one, interval-valued analysis is frequently used in the research of control theory, mathematical economy and so on. Motivated by the importance of convexity and inequality, our aim is to consider a new class of convex interval-valued mappings (I-V⋅Ms) known as left and right (L-R) $ \mathfrak{J} $-convex interval-valued mappings through pseudo-order relation ($ {\le }_{p} $) or partial order relation, because in interval space, both concepts coincide, so this order relation is defined in interval space. By using this concept, first we obtain Hermite-Hadamard (HH-) and Hermite-Hadamard-Fejér (HH-Fejér) type inequalities through pseudo-order relations via the Riemann-Liouville fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for L-R $ \mathfrak{J} $-convex- I-V⋅Ms and their variant forms as special cases. Under some mild restrictions, we have proved that the inclusion relation "$ \subseteq $" is coincident to pseudo-order relation "$ {\le }_{p} $" when the I-V⋅M is L-R $ \mathfrak{J} $-convex or L-R $ \mathfrak{J} $-concave. Results obtained in this paper can be viewed as an improvement and refinement of classical known results.



    加载中


    [1] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y M. Chu, New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), Article ID 125. https://doi.org/10.1186/s13660-020-02393-x doi: 10.1186/s13660-020-02393-x
    [2] S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [3] M. A. Latif, S. Rashid, S. S. Dragomir, Y. M. Chu, Hermite-Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), Article ID 317. https://doi.org/10.1186/s13660-019-2272-7 doi: 10.1186/s13660-019-2272-7
    [4] Y. M. Chu, G. D. Wang, X. H, Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653–663. https://doi.org/10.1002/mana.200810197 doi: 10.1002/mana.200810197
    [5] Y. M. Chu, W. F. Xia, X. H. Zhang, The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivar. Anal., 105 (2012), 412–442. https://doi.org/10.1016/j.jmva.2011.08.004 doi: 10.1016/j.jmva.2011.08.004
    [6] S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, Y. M. Chu, Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Spaces, 2019 (2019), Article ID 9487823. https://doi.org/10.1186/s13660-019-2007-9 doi: 10.1186/s13660-019-2007-9
    [7] S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 58. https://doi.org/10.1186/s13660-019-2007-9 doi: 10.1186/s13660-019-2007-9
    [8] K. S. Zhang, J. P. Wan, p-convex functions and their properties, Pure Appl. Math., 23 (2007), 130–133.
    [9] Z. B. Fang, R. J. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014), Article ID 45. https://doi.org/10.1186/1029-242X-2014-45 doi: 10.1186/1029-242X-2014-45
    [10] S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291. https://doi.org/10.1186/s13660-019-2242-0 doi: 10.1186/s13660-019-2242-0
    [11] M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931–4945. https://doi.org/10.3934/math.2020315 doi: 10.3934/math.2020315
    [12] Y. Bai, L. Gasiński, P. Winkert, S. D. Zeng, W1, p versus C1: the nonsmooth case involving critical growth, Bull. Math. Sci., 10 (2020), 2050009. https://doi.org/10.1142/S1664360720500095 doi: 10.1142/S1664360720500095
    [13] H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor, T. Zhao, Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 1–6. https://doi.org/10.1155/2020/3945384 doi: 10.1155/2020/3945384
    [14] Y. M. Chu, G. D. Wang, X. H, Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653–663. https://doi.org/10.1002/mana.200810197 doi: 10.1002/mana.200810197
    [15] M. Kunt, İ. İşcan, Hermite-Hadamard-Fejer type inequalities for p-convex functions, Arab J. Math. Sci., 23 (2017), 215–230. https://doi.org/10.1016/j.ajmsc.2016.11.001 doi: 10.1016/j.ajmsc.2016.11.001
    [16] Y. Sawano, H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Orrey space, J. Fourier Anal. Appl., 19 (2013), 20–47. https://doi.org/10.1007/s00041-012-9223-8 doi: 10.1007/s00041-012-9223-8
    [17] P. Ciatti, M. G. Cowling, F. Ricci, Hardy and uncertainty inequalities on stratified Lie groups, Adv. Math., 277 (2015), 365–387. https://doi.org/10.1016/j.aim.2014.12.040 doi: 10.1016/j.aim.2014.12.040
    [18] B. Gavrea, I. Gavrea, On some Ostrowski type inequalities, Gen. Math., 18 (2010), 33–44.
    [19] H. Gunawan, Fractional integrals and generalized Olsen inequalities, Kyungpook Math. J., 49 (2009), 31–39. https://doi.org/10.5666/KMJ.2009.49.1.031 doi: 10.5666/KMJ.2009.49.1.031
    [20] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pure Appl., 58 (1893), 171–215.
    [21] L. Fejxer, Uberdie Fourierreihen Ⅱ, Math. Naturwise. Anz, Ungar. Akad. Wiss., 24 (1906), 369–390.
    [22] R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
    [23] L. A. Zadeh, Fuzzy sets, Inform. Contr., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [24] T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Set. Syst., 327 (2017), 31–47. https://doi.org/10.1016/j.fss.2017.02.001 doi: 10.1016/j.fss.2017.02.001
    [25] T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055
    [26] H. Roman-Flores, Y. Chalco-Cano, G. N. Silva, A note on Gronwall type inequality for interval-valued functions, 2013 joint IFSA World Congress and NAFIPS Annual Meeting IEEE, 35 (2013), 1455–1458. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608616 doi: 10.1109/IFSA-NAFIPS.2013.6608616
    [27] Y. Chalco-Cano, A. Flores-Franulič, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608617 doi: 10.1109/IFSA-NAFIPS.2013.6608617
    [28] Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293-–3300. https://doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6
    [29] K. Nikodem, J. L. Snchez, L. Snchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. Aterna, 4 (2014), 979–987.
    [30] J. Matkowski, K. Nikodem, An integral Jensen inequality for convex multifunctions, Results Math., 26 (1994), 348–353. https://doi.org/10.1007/BF03323058 doi: 10.1007/BF03323058
    [31] D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Set. Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
    [32] M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. https://doi.org/10.3390/sym13040673 doi: 10.3390/sym13040673
    [33] M. B. Khan, P. O. Mohammed, M. A. Noor, A. M. Alsharif, K. I. Noor, New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation, AIMS Math., 6 (2021), 10964–10988. https://doi.org/10.3934/math.2021637 doi: 10.3934/math.2021637
    [34] G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001
    [35] M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. L. G. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 175. https://doi.org/10.3390/axioms10030175 doi: 10.3390/axioms10030175
    [36] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), Article number: 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [37] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63–85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005
    [38] R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
    [39] H. Budak, T. Tunç, M. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Am. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [40] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions, Adv. Differ. Equations, 2021 (2021), 6–20. https://doi.org/10.1186/s13662-020-03166-y doi: 10.1186/s13662-020-03166-y
    [41] M. B. Khan, M. A. Noor, P. O. Mohammed, J. L. Guirao, K. I. Noor, Some integral inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 14 (2021), 1–15. https://doi.org/10.1007/s44196-021-00009-w doi: 10.1007/s44196-021-00009-w
    [42] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. https://doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001
    [43] P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex Intell. Syst., 2021 (2021), 1–15. https://doi.org/10.1007/s40747-021-00379-w doi: 10.1007/s40747-021-00379-w
    [44] C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. https://doi.org/10.1007/0-387-31077-0
    [45] M. A. Alqudah, A. Kashuri, P. O. Mohammed, M. Raees, T. Abdeljawad, M. Anwar, et al., On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space, AIMS Math., 6 (2021), 4638–4663. https://doi.org/10.3934/math.2021273 doi: 10.3934/math.2021273
    [46] M. B. Khan, M. A. Noor, M. M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo order relation, Math. Meth. Appl. Sci., 2021.
    [47] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intell. Syst., 14 (2021), Article number: 180. https://doi.org/10.1007/s44196-021-00032-x doi: 10.1007/s44196-021-00032-x
    [48] D. Zhao, M. A. Ali, A. Kashuri, H. Budak, M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 1–38. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
    [49] H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-convex interval-valued functions, Mathematics, 10 (2022), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074
    [50] M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann-Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204
    [51] M. B. Khan, S. Treanțǎ, H. Budak, Generalized p-convex fuzzy-interval-valued functions and inequalities based upon the fuzzy-order relation, Fractal Fract., 6 (2022), 63. https://doi.org/10.3390/fractalfract6020063 doi: 10.3390/fractalfract6020063
    [52] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard-Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006
    [53] M. B. Khan, H. G. Zaini, S. Treanțǎ, G. Santos-García, J. E. Macías-Díaz, M. S. Soliman, Fractional calculus for convex functions in interval-valued settings and inequalities, Symmetry, 14 (2022), 341. https://doi.org/10.3390/sym14020341 doi: 10.3390/sym14020341
    [54] M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, Some fuzzy Riemann–Liouville fractional integral inequalities for preinvex fuzzy interval-valued functions, Symmetry, 14 (2022), 313. https://doi.org/10.3390/sym14020313 doi: 10.3390/sym14020313
    [55] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some new versions of integral inequalities for left and right preinvex functions in the interval-valued settings, Mathematics, 10 (2022), 611. https://doi.org/10.3390/math10040611 doi: 10.3390/math10040611
    [56] S. Treanţă, S. Jha, M. B. Khan, T. Saeed, On some constrained optimization problems, Mathematics, 10 (2022), 818. https://doi.org/10.3390/math10050818 doi: 10.3390/math10050818
    [57] S. Treanţă, M. B. Khan, T. Saeed, Optimality for control problem with PDEs of second-order as constraints, Mathematics, 10 (2022), 977. https://doi.org/10.3390/math10060977 doi: 10.3390/math10060977
    [58] M. B. Khan, J. E. Macías-Díaz, S. Treanțǎ, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178
    [59] S. Treanţă, M. B. Khan, T. Saeed, On some variational inequalities involving second-order partial derivatives, Fractal Fract., 6 (2022), 236. https://doi.org/10.3390/fractalfract6050236 doi: 10.3390/fractalfract6050236
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1509) PDF downloads(68) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog