Research article

Solving a Fredholm integral equation via coupled fixed point on bicomplex partial metric space

  • Received: 16 January 2022 Revised: 15 May 2022 Accepted: 10 June 2022 Published: 20 June 2022
  • MSC : 47H10, 54H25

  • In this paper, we obtain some coupled fixed point theorems on a bicomplex partial metric space. An example and an application to support our result are presented.

    Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Khalil Javed, Muhammad Arshad, Fahd Jarad. Solving a Fredholm integral equation via coupled fixed point on bicomplex partial metric space[J]. AIMS Mathematics, 2022, 7(8): 15402-15416. doi: 10.3934/math.2022843

    Related Papers:

  • In this paper, we obtain some coupled fixed point theorems on a bicomplex partial metric space. An example and an application to support our result are presented.



    加载中


    [1] C. Segre, Le Rappresentazioni Reali delle Forme Complesse e Gli Enti Iperalgebrici, Math. Ann., 40 (1892), 413–467. https://doi.org/10.1007/BF01443559 doi: 10.1007/BF01443559
    [2] G. S. Dragoni, Sulle funzioni olomorfe di una variabile bicomplessa, Reale Accad. d'Italia, Mem. Classe Sci. Nat. Fis. Mat., 5 (1934), 597–665.
    [3] N. Spampinato, Estensione nel campo bicomplesso di due teoremi, del Levi-Civita e del Severi, per le funzioni olomorfe di due variablili bicomplesse Ⅰ, Ⅱ, Reale Accad, Naz. Lincei., 22 (1935), 38–43.
    [4] N. Spampinato, Sulla rappresentazione delle funzioni do variabile bicomplessa totalmente derivabili, Ann. Mat. Pura Appl., 14 (1935), 305–325. https://doi.org/10.1007/BF02411933 doi: 10.1007/BF02411933
    [5] G. B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, New York, 1991.
    [6] F. Colombo, I. Sabadini D. C. Struppa, A. Vajiac, M. Vajiac, Singularities of functions of one and several bicomplex variables, Ark. Math., 49 (2011), 277–294. https://doi.org/10.1007/s11512-010-0126-0 doi: 10.1007/s11512-010-0126-0
    [7] M. Younis, D. Singh, On the existence of the solution of Hammerstein integral equations and fractional differential equations, J. Appl. Math. Comput., (2021), 1–19.
    [8] M. E. Luna-Elizaarrar$\acute{a}$s, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex numbers and their elementary functions, Cubo (Temuco), 14 (2012), 61–80. https://doi.org/10.4067/S0719-06462012000200004 doi: 10.4067/S0719-06462012000200004
    [9] J. Choi, S. K. Datta, T. Biswas, N. Islam, Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces, Honam Math. J., 39 (2017), 115–126. https://doi.org/10.5831/HMJ.2017.39.1.115 doi: 10.5831/HMJ.2017.39.1.115
    [10] I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdiscip. Math., 22 (2019), 1071–1082. https://doi.org/10.1080/09720502.2019.1709318 doi: 10.1080/09720502.2019.1709318
    [11] P. Dhivya, M. Marudai, Common fixed point theorems for mappings satisfying a contractive condition of rational expression on a ordered complex partial metric space, Cogent Mathematics, 4 (2017), 1389622. https://doi.org/10.1080/23311835.2017.1389622 doi: 10.1080/23311835.2017.1389622
    [12] M. Gunaseelan, L. N. Mishra, Coupled fixed point theorems on complex partial metric space using different type of contractive conditions, Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics, 11 (2019), 117–123. https://doi.org/10.5937/SPSUNP1902117G doi: 10.5937/SPSUNP1902117G
    [13] M. Gunaseelan, G. Arul Joseph, L. Yongji, G. Zhaohui, The existence and uniqueness solution of nonlinear Integral equations via common fixed point theorems, Mathematics, 9 (2021), 1179. https://doi.org/10.3390/math9111179 doi: 10.3390/math9111179
    [14] I. Beg, S. K. Datta, D. Pal, Fixed point in bicomplex valued metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 717–727.
    [15] G. Zhaohui, M. Gunaseelan, G. Arul Joseph, L. Yongjin, Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space, Mathematics, 9 (2021), 1584. https://doi.org/10.3390/math9141584 doi: 10.3390/math9141584
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1495) PDF downloads(69) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog