Research article

Generalized fractional differential equations for past dynamic

  • Received: 15 March 2022 Revised: 21 May 2022 Accepted: 23 May 2022 Published: 06 June 2022
  • MSC : 34A08, 45G05

  • Well-posedness of the terminal value problem for nonlinear systems of generalized fractional differential equations is studied. The generalized fractional operator is formulated with a classical operator and a related weighted space. The terminal value problem is transformed into weakly singular Fredholm and Volterra integral equations with delay. A lower bound for the well-posedness of the corresponding problem is introduced. A collocation method covering all problems with generalized derivatives is introduced and analyzed. Illustrative examples for validation and application of the proposed methods are supported. The effects of various fractional derivatives on the solution, well-posedness, and fitting error are studied. An application for estimating the population of diabetes cases in the past is introduced.

    Citation: Dumitru Baleanu, Babak Shiri. Generalized fractional differential equations for past dynamic[J]. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793

    Related Papers:

  • Well-posedness of the terminal value problem for nonlinear systems of generalized fractional differential equations is studied. The generalized fractional operator is formulated with a classical operator and a related weighted space. The terminal value problem is transformed into weakly singular Fredholm and Volterra integral equations with delay. A lower bound for the well-posedness of the corresponding problem is introduced. A collocation method covering all problems with generalized derivatives is introduced and analyzed. Illustrative examples for validation and application of the proposed methods are supported. The effects of various fractional derivatives on the solution, well-posedness, and fitting error are studied. An application for estimating the population of diabetes cases in the past is introduced.



    加载中


    [1] S. Kabanikhin, Inverse and ill-posed problems: theory and applications, Berline: De Gruyter, 2011. https://doi.org/10.1515/9783110224016
    [2] M. Al-Gwaiz, Sturm-Liouville theory and its applications, London: Springer, 2008. https://doi.org/10.1007/978-1-84628-972-9
    [3] K. Diethelm, N. Ford, Volterra integral equations and fractional calculus: do neighboring solutions intersect? J. Integral Equ. Appl., 24 (2012), 25–37. https://doi.org/10.1216/JIE-2012-24-1-25
    [4] N. Cong, H. Tuan, Generation of non-local fractional dynamical systems by fractional differential equations, J. Integral Equ. Appl., 29 (2017), 585–608. https://doi.org/10.1216/JIE-2017-29-4-585 doi: 10.1216/JIE-2017-29-4-585
    [5] K. Diethelm, N. Ford, A note on the well-posedness of terminal value problems for fractional differential equations, J. Integral Equ. Appl., 30 (2018), 371–376. https://doi.org/10.1216/JIE-2018-30-3-371 doi: 10.1216/JIE-2018-30-3-371
    [6] B. Shiri, G. Wu, D. Baleanu, Terminal value problems for the nonlinear systems of fractional differential equations, Appl. Numer. Math., 170 (2021), 162–178. https://doi.org/10.1016/j.apnum.2021.06.015 doi: 10.1016/j.apnum.2021.06.015
    [7] G. Yang, B. Shiri, H. Kong, G. Wu, Intermediate value problems for fractional differential equations, Comp. Appl. Math., 40 (2021), 195. https://doi.org/10.1007/s40314-021-01590-8 doi: 10.1007/s40314-021-01590-8
    [8] B. Shiri, G. Wu, D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer. Math., 156 (2020), 385–395. https://doi.org/10.1016/j.apnum.2020.05.007 doi: 10.1016/j.apnum.2020.05.007
    [9] D. Baleanu, B. Shiri, Nonlinear higher order fractional terminal value problems, AIMS Mathematics, 7 (2022), 7489–7506. https://doi.org/10.3934/math.2022420 doi: 10.3934/math.2022420
    [10] G. Wu, M. Luo, L. Huang, S. Banerjee, Short memory fractional differential equations for new memristor and neural network design, Nonlinear Dyn., 100 (2020), 3611–3623. https://doi.org/10.1007/s11071-020-05572-z doi: 10.1007/s11071-020-05572-z
    [11] R. Nigmatullin, D. Baleanu, A. Fernandez, Balance equations with generalised memory and the emerging fractional kernels, Nonlinear Dyn., 104 (2021), 4149–4161. https://doi.org/10.1007/S11071-021-06562-5 doi: 10.1007/S11071-021-06562-5
    [12] I. Podlubny, Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999.
    [13] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [14] U. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [15] U. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 860–865.
    [16] H. Fu, G. Wu, G. Yang, L. Huang, Continuous time random walk to a general fractional Fokker-Planck equation on fractal media, Eur. Phys. J. Spec. Top., 230 (2021), 3927–3933. https://doi.org/10.1140/epjs/s11734-021-00323-6 doi: 10.1140/epjs/s11734-021-00323-6
    [17] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [18] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [19] T. Kosztołowicz, A. Dutkiewicz, Subdiffusion equation with Caputo fractional derivative with respect to another function, Phys. Rev. E, 104 (2021), 014118. https://doi.org/10.1103/PhysRevE.104.014118 doi: 10.1103/PhysRevE.104.014118
    [20] Q. Fan, G. Wu, H. Fu, A note on function space and boundedness of the general fractional integral in continuous time Random walk, J. Nonlinear Math. Phys., 29 (2022), 95–102. https://doi.org/10.1007/s44198-021-00021-w doi: 10.1007/s44198-021-00021-w
    [21] B. Shiri, D. Baleanu, Numerical solution of some fractional dynamical systems in medicine involving non-singular kernel with vector order, Results in Nonlinear Analysis, 2 (2019), 160–168.
    [22] M. Zaky, A. Hendy, D. Suragan, A note on a class of Caputo fractional differential equations with respect to another function, Math. Comput. Simult., 196 (2022), 289–295. https://doi.org/10.1016/j.matcom.2022.01.016 doi: 10.1016/j.matcom.2022.01.016
    [23] M. Zaky, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Numer. Math., 145 (2019), 429–457. https://doi.org/10.1016/j.apnum.2019.05.008 doi: 10.1016/j.apnum.2019.05.008
    [24] M. Zaky, I. Ameen, A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions, Numer. Algor., 84 (2020), 63–89. https://doi.org/10.1007/s11075-019-00743-5 doi: 10.1007/s11075-019-00743-5
    [25] A. Hendy, M. Zaky, A priori estimates to solutions of the time-fractional convection-diffusion-reaction equation coupled with the Darcy system, Commun. Nonlinear Sci., 109 (2022), 106288. https://doi.org/10.1016/j.cnsns.2022.106288 doi: 10.1016/j.cnsns.2022.106288
    [26] M. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154 (2020), 205–222. https://doi.org/10.1016/j.apnum.2020.04.002 doi: 10.1016/j.apnum.2020.04.002
    [27] M. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 357 (2019), 103–122. https://doi.org/10.1016/j.cam.2019.01.046 doi: 10.1016/j.cam.2019.01.046
    [28] S. Samkoand, A. Kilbas, O. Marichev, Fractional integrals and derivatives: theory and applications, Philadelphia: Gordon and Breach Science Publishers, 1993.
    [29] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543234
    [30] T. Diogo, P. Lima, M. Rebelo, Numerical solution of a nonlinear Abel type Volterra integral equation, Commun. Pur. Appl. Anal., 5 (2006), 277–288. https://doi.org/10.3934/cpaa.2006.5.277 doi: 10.3934/cpaa.2006.5.277
    [31] H. Srivastava, R. Dubey, M. Jain, A study of the fractional‐order mathematical model of diabetes and its resulting complications, Math. Method. Appl. Sci., 42 (2019), 4570–4583. https://doi.org/10.1002/mma.5681 doi: 10.1002/mma.5681
    [32] X. Lin, Y. Xu, X. Pan, J. Xu, Y. Ding, X. Sun, et al., Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025, Sci. Rep., 10 (2020), 14790. https://doi.org/10.1038/s41598-020-71908-9 doi: 10.1038/s41598-020-71908-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1892) PDF downloads(158) Cited by(33)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog