Research article

A study on the fractal-fractional tobacco smoking model

  • Received: 30 March 2022 Revised: 01 May 2022 Accepted: 08 May 2022 Published: 25 May 2022
  • MSC : 26A33, 34A08, 35R11

  • In this article, we consider a fractal-fractional tobacco mathematical model with generalized kernels of Mittag-Leffler functions for qualitative and numerical studies. From qualitative point of view, our study includes; existence criteria, uniqueness of solution and Hyers-Ulam stability. For the numerical aspect, we utilize Lagrange's interpolation polynomial and obtain a numerical scheme which is further illustrated simulations. Lastly, a comparative analysis is presented for different fractal and fractional orders. The numerical results are divided into four figures based on different fractal and fractional orders. We have found that the fractional and fractal orders have a significant impact on the dynamical behaviour of the model.

    Citation: Hasib Khan, Jehad Alzabut, Anwar Shah, Sina Etemad, Shahram Rezapour, Choonkil Park. A study on the fractal-fractional tobacco smoking model[J]. AIMS Mathematics, 2022, 7(8): 13887-13909. doi: 10.3934/math.2022767

    Related Papers:

  • In this article, we consider a fractal-fractional tobacco mathematical model with generalized kernels of Mittag-Leffler functions for qualitative and numerical studies. From qualitative point of view, our study includes; existence criteria, uniqueness of solution and Hyers-Ulam stability. For the numerical aspect, we utilize Lagrange's interpolation polynomial and obtain a numerical scheme which is further illustrated simulations. Lastly, a comparative analysis is presented for different fractal and fractional orders. The numerical results are divided into four figures based on different fractal and fractional orders. We have found that the fractional and fractal orders have a significant impact on the dynamical behaviour of the model.



    加载中


    [1] A. W. Bergen, N. Caporaso, Cigarette smoking, J. Natl. Cancer Inst., 91 (1999), 1365–1376. https://doi.org/10.1093/jnci/91.16.1365 doi: 10.1093/jnci/91.16.1365
    [2] N. J. Wald, A. K. Hackshaw, Cigarette smoking: an epidemiological overview, Brit. Med. Bull., 52 (1996), 3–11. https://doi.org/10.1093/oxfordjournals.bmb.a011530 doi: 10.1093/oxfordjournals.bmb.a011530
    [3] B. Lloyd, K. Lucas, Smoking in adolescence: images and identities, London: Routledge, 1998.
    [4] S. Cohen, E. Lichtenstein, Perceived stress, quitting smoking, and smoking relapse, Health Psychol., 9 (1990), 466–478. https://doi.org/10.1037//0278-6133.9.4.466 doi: 10.1037//0278-6133.9.4.466
    [5] A. H. Mokdad, J. S. Marks, D. F. Stroup, J. L. Gerberding, Actual causes of death in the United States, JAMA, 291 (2004), 1238–1245. https://doi.org/10.1001/jama.291.10.1238 doi: 10.1001/jama.291.10.1238
    [6] A. Zeb, G. Zaman, S. Momani, Square-root dynamics of a giving up smoking model, Appl. Math. Model., 37 (2013), 5326–5334. https://doi.org/10.1016/j.apm.2012.10.005 doi: 10.1016/j.apm.2012.10.005
    [7] O. Sharomi, A. B. Gumel, Curtailing smoking dynamics: A mathematical modeling approach, Appl. Math. Comput., 195 (2008), 475–499. https://doi.org/10.1016/j.amc.2007.05.012 doi: 10.1016/j.amc.2007.05.012
    [8] Z. Alkhudhari, S. Al-Sheikh, S. Al-Tuwairqi, Stability analysis of a giving up smoking model, Int. J. Appl. Math. Res., 3 (2014), 168–177. http://doi.org/10.14419/ijamr.v3i2.2239 doi: 10.14419/ijamr.v3i2.2239
    [9] N. H. Shah, F. A. Thakkar, B. M. Yeolekar, Stability analysis of tuberculosis due to smoking, Int. J. Innov. Sci. Res. Tech., 3 (2018), 230–237.
    [10] Q. Din, M. Ozair, T. Hussain, U. Saeed, Qualitative behavior of asmoking model, Adv. Differ. Equ., 2016 (2016), 96. https://doi.org/10.1186/s13662-016-0830-6 doi: 10.1186/s13662-016-0830-6
    [11] A. M. Pulecio-Montoya, L. E. Lopez-Montenegro, L. M. Benavides, Analysis of a mathematical model of smoking, Contemp. Eng. Sci., 12 (2019), 117–129. https://doi.org/10.12988/ces.2019.9517 doi: 10.12988/ces.2019.9517
    [12] Z. Zhang, R. Wei, W. Xia, Dynamical analysis of a giving up smoking model with time delay, Adv. Differ. Equ., 2019 (2019), 505. https://doi.org/10.1186/s13662-019-2450-4 doi: 10.1186/s13662-019-2450-4
    [13] S. A. Khan, K. Shah, G. Zaman, F. Jarad, Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative, Chaos, 29 (2019), 013128. https://doi.org/10.1063/1.5079644 doi: 10.1063/1.5079644
    [14] S. Ucar, E. Ucar, N. ozdemir, Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Soliton. Fract., 118 (2019), 300–306. https://doi.org/10.1016/j.chaos.2018.12.003 doi: 10.1016/j.chaos.2018.12.003
    [15] G. Rahman, R. P. Agarwal, Q. Din, Mathematical analysis of giving up smoking model via harmonic mean type incidence rate, Appl. Math. Comput., 354 (2019), 128–148. https://doi.org/10.1016/j.amc.2019.01.053 doi: 10.1016/j.amc.2019.01.053
    [16] C. Sun, J. Jia, Optimal control of a delayed smoking model with immigration, J. Biol. Dynam., 13 (2019), 447–460. https://doi.org/10.1080/17513758.2019.1629031 doi: 10.1080/17513758.2019.1629031
    [17] P. Veeresha, D. G. Prakasha, H. M. Baskonus, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method, Math. Sci., 13 (2019), 115–128. https://doi.org/10.1007/s40096-019-0284-6 doi: 10.1007/s40096-019-0284-6
    [18] A. M. S. Mahdy, N. H. Sweilam, M. Higazy, Approximate solution for solving nonlinear fractional order smoking model, Alex. Eng. J., 59 (2020), 739–752. https://doi.org/10.1016/j.aej.2020.01.049 doi: 10.1016/j.aej.2020.01.049
    [19] A. A. Alshareef, H. A. Batarfi, Stability analysis of chain, mild and passive smoking model, Amer. J. Comput. Math., 10 (2020), 31–42. https://doi.org/10.4236/ajcm.2020.101003 doi: 10.4236/ajcm.2020.101003
    [20] Z. Zhang, J. Zou, R. K. Upadhyay, A. Pratap, Stability and Hopf bifurcation analysis of a delayed tobacco smoking model containing snuffing class, Adv. Differ. Equ., 2020 (2020), 349. https://doi.org/10.1186/s13662-020-02808-5 doi: 10.1186/s13662-020-02808-5
    [21] A. Bernoussi, Global stability analysis of an SEIR epidemic model with relapse and general incidence rates, Appl. Sci., 21 (2019), 54–68.
    [22] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [23] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [24] D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. https://doi.org/10.1016/j.cnsns.2017.12.003 doi: 10.1016/j.cnsns.2017.12.003
    [25] T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos, 29 (2019), 023102. https://doi.org/10.1063/1.5085726 doi: 10.1063/1.5085726
    [26] T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2018 (2018), 468. https://doi.org/10.1186/s13662-018-1914-2 doi: 10.1186/s13662-018-1914-2
    [27] H. Khan, F. Jarad, T. Abdeljawad, A. Khan, A singular ABC-fractional differential equation with p-Laplacian operator, Chaos Soliton. Fract., 129 (2019), 56–61. https://doi.org/10.1016/j.chaos.2019.08.017 doi: 10.1016/j.chaos.2019.08.017
    [28] S. Rezapour, S. Etemad, H. Mohammadi, A mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the anthrax disease model in animals, Adv. Differ. Equ., 2020 (2020), 481. https://doi.org/10.1186/s13662-020-02937-x doi: 10.1186/s13662-020-02937-x
    [29] H. M. Alshehri, A. Khan, A fractional order Hepatitis C mathematical model with Mittag-Leffler kernel, J. Funct. Space., 2021 (2021), 2524027. https://doi.org/10.1155/2021/2524027 doi: 10.1155/2021/2524027
    [30] C. T. Deressa, S. Etemad, S. Rezapour, On a new four-dimensional model of memristor-based chaotic circuit in the context of nonsingular Atangana-Baleanu-Caputo operators, Adv. Differ. Equ., 2021 (2021), 444. https://doi.org/10.1186/s13662-021-03600-9 doi: 10.1186/s13662-021-03600-9
    [31] C. T. Deressa, S. Etemad, M. K. A. Kaabar, S. Rezapour, Qualitative analysis of a hyperchaotic Lorenz-Stenflo mathematical model via the Caputo fractional operator, J. Funct. Space., 2022 (2022), 4975104. https://doi.org/10.1155/2022/4975104 doi: 10.1155/2022/4975104
    [32] P. Kumar, V. S. Erturk, Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative, Chaos Soliton. Fract., 144 (2021), 110672. https://doi.org/10.1016/j.chaos.2021.110672 doi: 10.1016/j.chaos.2021.110672
    [33] A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Stability analysis of solutions and existence theory of fractional Lagevin equation, Alex. Eng. J., 60 (2021), 3641–3647. https://doi.org/10.1016/j.aej.2021.02.011 doi: 10.1016/j.aej.2021.02.011
    [34] A. Pratap, R. Raja, R. P. Agarwal, J. Alzabut, M. Niezabitowski, E. Hincal, Further results on asymptotic and finite-time stability analysis of fractional-order time-delayed genetic regulatory networks, Neurocomputing, 475 (2022), 26–37. https://doi.org/10.1016/j.neucom.2021.11.088 doi: 10.1016/j.neucom.2021.11.088
    [35] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [36] R. Begum, O. Tunc, H. Khan, H. Gulzar, A. Khan, A fractional order Zika virus model with Mittag-Leffler kernel, Chaos Soliton. Fract., 146 (2021), 110898. https://doi.org/10.1016/j.chaos.2021.110898 doi: 10.1016/j.chaos.2021.110898
    [37] A. Ali, Q. Iqbal, J. K. K. Asamoah, S. Islam, Mathematical modeling for the transmission potential of Zika virus with optimal control strategies, Eur. Phys. J. Plus, 137 (2022), 146. https://doi.org/10.1140/epjp/s13360-022-02368-5 doi: 10.1140/epjp/s13360-022-02368-5
    [38] P. Kumar, V. S. Erturk, H. Almusawa, Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana-Baleanu derivatives, Results Phys., 24 (2021), 104186. https://doi.org/10.1016/j.rinp.2021.104186 doi: 10.1016/j.rinp.2021.104186
    [39] R. Zarin, H. Khaliq, A. Khan, D. Khan, A. Akgul, U. W. Humphries, Deterministic and fractional modeling of a computer virus propagation, Results Phys., 33 (2022), 105130. https://doi.org/10.1016/j.rinp.2021.105130 doi: 10.1016/j.rinp.2021.105130
    [40] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0
    [41] C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via $\psi$-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021), 201. https://doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z
    [42] J. Alzabut, G. M. Selvam, R. A. El-Nabulsi, D. Vignesh, M. E. Samei, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions, Symmetry, 13 (2021), 473. https://doi.org/10.3390/sym13030473 doi: 10.3390/sym13030473
    [43] S. T. M. Thabet, S. Etemad, S. Rezapour, On a new structure of the pantograph inclusion problem in the Caputo conformable setting, Bound. Value Probl., 2020 (2020), 171. https://doi.org/10.1186/s13661-020-01468-4 doi: 10.1186/s13661-020-01468-4
    [44] P. Kumar, V. S. Erturk, A. Yusuf, K. S. Nisar, S. F. Abdelwahab, A study on canine distemper virus (CDV) and rabies epidemics in the red fox population via fractional derivatives, Results Phys., 25 (2021), 104281. https://doi.org/10.1016/j.rinp.2021.104281 doi: 10.1016/j.rinp.2021.104281
    [45] J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821
    [46] H. Khan, C. Tunc, W. Chen, A. Khan, Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacial operator, J. Appl. Anal. Comput., 8 (2018), 1211–1226. https://doi.org/10.11948/2018.1211 doi: 10.11948/2018.1211
    [47] A. Omame, U. K. Nwajeri, M. Abbas, C. P. Onyenegecha, A fractional order control model for Diabetes and COVID-19 co-dynamics with Mittag-Leffler function, Alex. Eng. J., 61 (2022), 7619–7635. https://doi.org/10.1016/j.aej.2022.01.012 doi: 10.1016/j.aej.2022.01.012
    [48] D. Baleanu, S. Etemad, H. Mohammadi, S. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul., 100 (2021), 105844. https://doi.org/10.1016/j.cnsns.2021.105844 doi: 10.1016/j.cnsns.2021.105844
    [49] S. Rezapour, B. Tellab, C. T. Deressa, S. Etemad, K. Nonlaopon, H-U-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method, Fractal Fract., 5 (2021), 166. https://doi.org/10.3390/fractalfract5040166 doi: 10.3390/fractalfract5040166
    [50] E. Ucar, N. Özdemir, E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 308. https://doi.org/10.1051/mmnp/2019002 doi: 10.1051/mmnp/2019002
    [51] E. Ucar, S. Ucar, F. Evirgen, N. Özdemir, A fractional SAIDR model in the frame of Atangana-Baleanu derivative, Fractal Fract., 50 (2021), 32. https://doi.org/10.3390/fractalfract5020032 doi: 10.3390/fractalfract5020032
    [52] S. Ucar, Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives, Discrete Cont. Dyn. Syst. S, 14 (2021), 2571–2589. https://doi.org/10.3934/dcdss.2020178 doi: 10.3934/dcdss.2020178
    [53] S. Ucar, E. Ucar, N. Özdemir, Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Soliton. Fract., 118 (2019), 300–306. https://doi.org/10.1016/j.chaos.2018.12.003 doi: 10.1016/j.chaos.2018.12.003
    [54] A. Khan, H. M. Alshehri, J. F. Gómez-Aguilar, Z. A. Khan, G. Fernández-Anaya, A predator-prey model involving variable-order fractional differential equations with Mittag-Leffler kernel, Adv. Differ. Equ., 2021 (2021), 183. https://doi.org/10.1186/s13662-021-03340-w doi: 10.1186/s13662-021-03340-w
    [55] H. M. Alshehri, A. Khan, A fractional order Hepatitis C mathematical model with Mittag-Leffler kernel, J. Funct. Space., 2021 (2021), 2524027. https://doi.org/10.1155/2021/2524027 doi: 10.1155/2021/2524027
    [56] P. Bedi, A. Kumar, A. Khan, Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Soliton. Fract., 150 (2021), 111153. https://doi.org/10.1016/j.chaos.2021.111153 doi: 10.1016/j.chaos.2021.111153
    [57] W. Chen, Time-space fabric underlying anomalous diffusion, Chaos Soliton. Fract., 28 (2006), 923–929. https://doi.org/10.1016/j.chaos.2005.08.199 doi: 10.1016/j.chaos.2005.08.199
    [58] R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165–175. https://doi.org/10.1016/S0378-4371(97)00422-6 doi: 10.1016/S0378-4371(97)00422-6
    [59] W. Chen, H. G. Sun, X. Zhang, D. Korosak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59 (2010), 1754–1758. https://doi.org/10.1016/j.camwa.2009.08.020 doi: 10.1016/j.camwa.2009.08.020
    [60] K. M. Owolabi, A. Atangana, A. Akgul, Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model, Alex. Eng. J., 59 (2020), 2477–2490. https://doi.org/10.1016/j.aej.2020.03.022 doi: 10.1016/j.aej.2020.03.022
    [61] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Modeling and analysis of novel COVID-19 under fractal-fractional derivative with case study of malaysia, Fractals, 29 (2021), 2150020. https://doi.org/10.1142/S0218348X21500201 doi: 10.1142/S0218348X21500201
    [62] E. Bonyah, M. Yavuz, D. Baleanu, S. Kumar, A robust study on the listeriosis disease by adopting fractal-fractional operators, Alex. Eng. J., 61 (2022), 2016–2028. https://doi.org/10.1016/j.aej.2021.07.010 doi: 10.1016/j.aej.2021.07.010
    [63] M. Alqhtani, K. M. Saad, Numerical solutions of space-fractional diffusion equations via the exponential decay kernel, AIMS Mathematics, 7 (2022), 6535–6549. https://doi.org/10.3934/math.2022364 doi: 10.3934/math.2022364
    [64] M. Alqhtani, K. M. Saad, Fractal-fractional Michaelis–Menten enzymatic reaction model via different kernels, Fractal Fract., 6 (2021), 13. https://doi.org/10.3390/fractalfract6010013 doi: 10.3390/fractalfract6010013
    [65] K. M. Saad, J. F. Gomez-Aguilar, A. A. Almadiy, A fractional numerical study on a chronic hepatitis C virus infection model with immune response, Chaos Soliton. Fract., 139 (2020), 110062. https://doi.org/10.1016/j.chaos.2020.110062 doi: 10.1016/j.chaos.2020.110062
    [66] K. M. Saad, M. Alqhtani, Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear, AIMS Mathematics, 6 (2021), 3788–3804. https://doi.org/10.3934/math.2021225 doi: 10.3934/math.2021225
    [67] A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [68] M. Arfan, K. Shah, A. Ullah, Fractal-fractional mathematical model of four species comprising of prey-predation, Phys. Scr., 96 (2021), 124053. https://doi.org/10.1088/1402-4896/ac2f37 doi: 10.1088/1402-4896/ac2f37
    [69] M. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale, et al., Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results Phys., 20 (2021), 103702. https://doi.org/10.1016/j.rinp.2020.103702 doi: 10.1016/j.rinp.2020.103702
    [70] K. Shah, M. Arfan, I. Mahariq, A. Ahmadian, S. Salahshour, M. Ferrara, Fractal-fractional mathematical model addressing the situation of Corona virus in Pakistan, Results Phys., 19 (2020), 103560. https://doi.org/10.1016/j.rinp.2020.103560 doi: 10.1016/j.rinp.2020.103560
    [71] Z. A. Khan, M. ur Rahman, K. Shah, Study of a fractal-fractional smoking models with relapse and harmonic mean type incidence rate, J. Funct. Space., 2021 (2021) 6344079. https://doi.org/10.1155/2021/6344079 doi: 10.1155/2021/6344079
    [72] M. Arif, P. Kumam, W. Kumam, A. Akgul, T. Sutthibutpong, Analysis of newly developed fractal-fractional derivative with power law kernel for MHD couple stress fluid in channel embedded in a porous medium, Sci. Rep., 11 (2021), 20858. https://doi.org/10.1038/s41598-021-00163-3 doi: 10.1038/s41598-021-00163-3
    [73] H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham, A study on dynamics of CD4$^+$ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials. Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366 doi: 10.3390/math10091366
    [74] H. Khan, K. Alam, H. Gulzar, S. Etemad, S. Rezapour, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simul., 198 (2022), 455–473. https://doi.org/10.1016/j.matcom.2022.03.009 doi: 10.1016/j.matcom.2022.03.009
    [75] A. Atangana, A. Akgul, K. M. Owolabi, Analysis of fractal fractional differential equations, Alex. Eng. J., 59 (2020), 1117–1134. https://doi.org/10.1016/j.aej.2020.01.005 doi: 10.1016/j.aej.2020.01.005
    [76] A. U. Awan, A. Sharif, K. A. Abro, M. Ozair, T. Hussain, Dynamical aspects of smoking model with cravings to smoke, Nonlinear Eng., 10 (2021), 91–108. http://doi.org/10.1515/nleng-2021-0008 doi: 10.1515/nleng-2021-0008
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1876) PDF downloads(144) Cited by(27)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog