Research article

Transcritical bifurcation in a multiparametric nonlinear system

  • Received: 11 February 2022 Revised: 23 April 2022 Accepted: 26 April 2022 Published: 23 May 2022
  • MSC : 42C15, 46C05, 46C20

  • In this paper we study a multiparametric nonlinear system with a transcritical bifurcation in a region of points of $ \mathbb{R}^3 $. The parametric regions that constitute the boundaries where important qualitative changes occur in the dynamics of the system are determined. The equilibrium points in each of the regions are also established and classified. Finally, the stability of the equilibrium points at infinity of the system obtained from the Poincare compactification is classified, and the global phase portrait of the system is made.

    Citation: Osmin Ferrer, José Guerra, Alberto Reyes. Transcritical bifurcation in a multiparametric nonlinear system[J]. AIMS Mathematics, 2022, 7(8): 13803-13820. doi: 10.3934/math.2022761

    Related Papers:

  • In this paper we study a multiparametric nonlinear system with a transcritical bifurcation in a region of points of $ \mathbb{R}^3 $. The parametric regions that constitute the boundaries where important qualitative changes occur in the dynamics of the system are determined. The equilibrium points in each of the regions are also established and classified. Finally, the stability of the equilibrium points at infinity of the system obtained from the Poincare compactification is classified, and the global phase portrait of the system is made.



    加载中


    [1] J. P. Connell, A. DiMercurio, D. Corbetta, Dynamic systems theory, Springer, 2017. https://doi.org/10.1007/978-3-319-47829-6_1594-1
    [2] C. Caginalp, A dynamical systems approach to cryptocurrency stability, AIMS Mathematics, 4 (2019), 1065–1077. https://doi.org/10.3934/math.2019.4.1065 doi: 10.3934/math.2019.4.1065
    [3] S. M. E. K. Chowdhury, J. T. Chowdhury, S. F. Ahmed, P. Agarwal, I. A. Badruddin, S. Kamangar, Mathematical modelling of COVID-19 disease dynamics: Interaction between immune system and SARS-CoV-2 within host, AIMS Mathematics, 7 (2022), 2618–2633. https://doi.org/10.3934/math.2022147 doi: 10.3934/math.2022147
    [4] L. Y. Wu, H. Zheng, Hopf bifurcation in a delayed predator-prey system with asymmetric functional response and additional food, AIMS Mathematic, 6 (2021), 12225–12244. https://doi.org/10.3934/math.2021708 doi: 10.3934/math.2021708
    [5] G. X. Yang, X. Y. Li, Bifurcation phenomena in a single-species reaction-diffusion model with spatiotemporal delay, AIMS Mathematics, 6 (2021), 6687–6698. https://doi.org/10.3934/math.2021392 doi: 10.3934/math.2021392
    [6] J. Rodríguez-Contreras, P. B. Acosta-Humánez, A. Reyes-Linero, Algebraic and qualitative remarks about the family $yy' = (\alpha x^{m+ k - 1} + \beta x^ {m-k- 1})y + \gamma x^{2m-2k-1}$, Open Math., 17 (2019), 1220–1238. https://doi.org/10.1515/math-2019-0100 doi: 10.1515/math-2019-0100
    [7] P. B. Acosta-Humánez, A. Reyes-Linero, J. Rodriguez-Contreras, Galoisian and qualitative approaches to linear Polyanin-Zaitsev vector fields, Open Math., 16 (2018), 1204–1217. https://doi.org/10.1515/math-2018-0102 doi: 10.1515/math-2018-0102
    [8] J. Escobar, Differential equations with Maple applications, 2004. Available from: https://proxysmsn.webcindario.com/librosdigitales11/libroED.pdf
    [9] A. Andronov, A. Gordon, A. Maier, Qualitative theory of second-order dynamic systems, New York: Halsted Press, 1973.
    [10] L. Perko, Differential equations and dynamical systems, 3 Eds., New York: Springer, 2001. https://doi.org/10.1007/978-1-4613-0003-8
    [11] A. F. Andreev, Investigation of the behaviour of the integral curves of a system of two differential equations in the neighborhood of a singular point, Trans. Amer. Math. Soc., 8 (1958), 183–207.
    [12] F. Dumortier, J. Llibre, J. Artés, Qualitative theory of planar differential systems, Berlin Heidelberg: Springer, 2006. https://doi.org/10.1007/978-3-540-32902-2
    [13] V. F. Zaitsev, A. D. Polyanin, Handbook of exact solutions for ordinary differential equations, 2Eds., Boca Raton: Chapman and Hall, 2002.
    [14] D. M. Li, B. Chai, A dynamic model of hepatitis B virus with drug-resistant treatment, AIMS Mathematics, 5 (2020), 4734–4753. https://doi.org/10.3934/math.2020303 doi: 10.3934/math.2020303
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1838) PDF downloads(148) Cited by(1)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog