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1. Introduction

Dynamical systems have their origin in mathematics and physics. They are attributed to Henri
Poincaré (1854–1912), who developed the foundations of chaos theory, the pioneer of dynamical
systems [1]. A dynamical system is considered as a mathematical model, to study deterministic or
random iterative processes. Dynamical systems have proven to be a powerful tool, for example, for
analyzing the stability of cryptocurrencies and the modeling of Covid-19 disease as evidenced
in [2, 3]. In the present paper a multiparametric nonlinear system is studied with the objective of
establishing tools to analyze dynamic models applicable to different contexts. All the results of the
present study are part of the master thesis of the second author. Similar ideas have been developed
independently in [4–7].

The elements necessary to carry out the qualitative study of the nonlinear multiparameter system
are presented in Section 2. A definition of autonomous system is given there (Definition 2.1); through
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Definition 2.2 it is established what it is and how an equilibrium point is determined for an
autonomous system. The types of equilibrium points or singularities are specified according to the
structure of the eigenvalues (Theorems 2.1–2.4). The types of sectors presented by autonomous
systems are defined (Definition 2.3), Poincaré’s definition of the index of a Jordan curve
(Definition 2.4), the index of a critical point with respect to a vector field (Definition 2.5) and the
Poincaré compactification (Definition 2.6).

The study of the linear multiparametric system begins in Section 3. Since the system under study
has three parameters, we proceed to partition the space R3 into parametric regions, which determine
the boundaries with respect to which qualitative changes occur in the dynamics of the system. In
Proposition 3.1, we show that the eight parametric regions form a partition ofR3. Then, in Section 4, we
determine the number of equilibrium points or singularities existing for the system under study in each
of the parametric regions, with the objective of analyzing the appearance or destruction of equilibrium
points when varying the parameters of the system from one region to another (Proposition 4.1).

In Section 5, with the objective of analyzing the changes that occur in the stability of the equilibrium
points of the system when varying the parameters from one region to another, its stability is classified
in each of the parametric regions taking into account the structure of the eigenvalues of the Jacobian
matrix associated to the system in each case (Propositions 5.1–5.3). In Section 6, starting from the
stability of equilibrium points studied in Section 5 and the creation or destruction of equilibrium points
from one parametric region to another (Section 4), we analyze whether or not the system presents
bifurcations and the values of the parameters where the bifurcations occur, called bifurcation points. In
Section 7 with the objective of obtaining a global behavior of the system, both in the finite plane and
near infinity, we determine and classify singularities near infinity from the Poincaré compactification
and the theorems used to classify singularities in the finite plane are determined and classified. In
Section 8, the global phase portraits for the system are shown, where the behavior of the trajectories
both in the finite plane and near infinity can be visualized.

2. Preliminares

Definition 2.1. [8] A plane autonomous system is a system of two differential equations of the form

ẋ = F(x, y)
ẏ = G(x, y),

(2.1)

where F and G are continuous functions with continuous first order partial derivatives in the entire
plane.

Definition 2.2. [8] The point (x0, y0) such that F(x0, y0) = 0 and G(x0, y0) = 0 is called a critical
point of the system.

Theorem 2.1. [9] Let (0, 0) be an isolated singularity of the vector field X(x, y) = (ax+by+F(x, y), cx+

dy + G(x, y)), where F and G are analytic in a neighborhood of the origin and have series expansions
starting with terms of degree two in x and y. We say that (0, 0) is a nondegenerate singularity if
ad − bc , 0. Let λ1 and λ2 be the eigenvalues of DX(0, 0). Then:
1) If λ1, λ2 are real and λ1 λ2 < 0, then (0, 0) is saddle point whose separatrices tend to (0, 0) in the
directions given by the eigenvectors associated with λ1 and λ2.
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2) If λ1, λ2 are real and λ1 λ2 > 0, then (0, 0) is a node. If λ1 > 0 (λ1 < 0) then is a source (sink).
3) If λ1 = α+βi and λ2 = α−βi with α, β , 0 then (0, 0) is a focus. If α > 0(α < 0) then it is a repulsor
(attractor).
4) If λ1 = βi and λ2 = −βi, then (0, 0) is a linear center, topologically a focus or a center.

Definition 2.3. [10] A sector that is topologically equivalent to the sector shown in Figure 1 (a) is
called a hyperbolic sector. A sector that is topologically equivalent to the sector shown in
Figure 1 (b), is called a parabolic sector; and a sector that is topologically equivalent to the one
shown in Figure 1 (c) is called an elliptic sector.

Figure 1. (a) A hyperbolic sector, (b) A parabolic sector, and (c) An elliptic sector.

The following definition is essential to define the index of a point of a vector field f.

Definition 2.4. [10] The index I fff (C) of a Jordan curve C relative to a vector field f ∈ C1(R2), where f
has no critical point on C, is defined as the integer

I fff (C) =
∆Θ

2π
.

Where ∆Θ is the total change in the angle Θ that the vector f= (P,Q)T makes with respect to the
x-axis, i.e., ∆Θ the change in

Θ(x, y) = arctan
Q(x, y)
P(x, y)

,

as the point (x, y) traverses C exactly once in the positive direction.

Definition 2.5. [10] Let f ∈ C1(E) where E is an open subset of R2 and let bf x0x0x0 ∈ E be an isolated
critical point of f. Let C be a Jordan curve contained in E and containing x0x0x0 and no other critical
point of f on its interior. Then the index of the critical point x0x0x0 with respect to f

I fff (xxx0) = I fff (C).

The following theorem is fundamental to analyze the behavior around singularities when the matrix
A = DX(p) has an eigenvalue equal to zero, the determinant is equal to zero, the trace is nonzero and
the matrix is different from the zero matrix.

Theorem 2.2. [9] Let (0, 0) be an isolated singularity of the system:

ẋ = X(x, y)
ẏ = y + Y(x, y),

(2.2)
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where X and Y are analytic in a neighborhood of the origin and have expansions starting with second
degree terms in x and y. Let y = f (x) be the solution of the equation y + Y(x, y) = 0 in a neighborhood
of (0, 0), and suppose that the serial expression of the function g(x) = X(x, f (x)) has the form g(x) =

amxm + ... where m ≥ 2, am , 0.
Then:

1) If m is odd and am > 0, then (0, 0) is topologically a node.
2) If m is odd and am < 0, then (0, 0) is topologically a saddle, where two of its separatrices tend to
(0, 0) in the 0 and π directions and the other two in the π

2 and 3π
2 directions.

3) If m is even, then (0, 0) is a saddle-node, i.e., a singularity whose neighborhood is the union of
a parabolic sector and two hyperbolic sectors, two of its separatrices tend to (0, 0) in the π

2 and 3π
2

directions, and the other two in the 0 or π directions according to am < 0 or am > 0.

Now, we will make considerations about two theorems necessary to analyze the behavior of a
singularity when the matrix, A = DX(p), has two eigenvalues equal to zero, the determinant and the
trace are equal to zero, but the corresponding matrix is different from the zero matrix.

Theorem 2.3. [11] Let (0, 0) be an isolated singularity of the system:

ẋ = y + X(x, y)
ẏ = Y(x, y),

(2.3)

where X and Y are analytic in a neighborhood of the origin and have expansions starting with second
degree terms in x and y. Let y = F(x) = a2x2 + a3x3 + ... be a solution of the equation y + Y(x, y) = 0
in a neighborhood of (0, 0), and suppose they have the following series expansion of the function
f (x) = Y(x, F(x)) = axα(1 + ....) and φ(x) = (∂X

∂x + ∂Y
∂y )(x, F(x)) = bxβ(1 + ...) where a , 0, α ≥ 2 and

β ≥ 1.
Then:

1) If α is even and:
a) α > 2β + 1, then the origin is a saddle-node( index 0), (Figure 2 (a)).
b) If α < 2β + 1, or, φ(x) ≡ 0, then the origin is a singularity whose neighborhood is the union of

two hyperbolic sectors(index 0), (Figure 2 (b)).
2) If α is odd and a > 0, then the origin is a saddle (Index −1), (Figure 2 (c)).
3) If alpha is odd, a < 0, and:

a) If (α > 2β+ 1, and, β even, or, α = 2β+ 1, and, β is even) and b2 + 4a(β+ 1) ≥ 0, then the origin
is a node (Index + 1), (Figure 2 (d)). The node is stable if b < 0, or unstable if b > 0.

b) If (α > 2β + 1, and, β odd, or, (α = 2β + 1), and, β odd) and b2 + 4a(β + 1) ≥ 0, then the origin
is the union of a hyperbolic sector and an elliptic sector (Index + 1), (Figure 2 (e)).

c) If α = 2β + 1 and b2 + 4a(β + 1) < 0, or, (α < 2β + 1, or, φ ≡ 0) then the origin is a focus, or, a
center (Index + 1).
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Figure 2. Local behavior near a singularity.

Given the polynomial differential system

ẋ = P(x, y)
ẏ = Q(x, y).

(2.4)

According to [10], it can be transformed to the “normal” form

ẋ = y
ẏ = akxk[1 + h(x)] + bnxny[1 + g(x)] + y2[R(x, y)],

(2.5)

where h(x), g(x), and, R(x, y) are analytic in a neighborhood of the origin, h(0) = g(0) = 0 , k ≥ 2,
ak , 0 and n ≥ 1.

From this transformation the following theorem is established.

Theorem 2.4. [10] Let k = 2m + 1, with m ≥ 1 in (2.5) and be λ = b2
n + 4(m + 1)ak.

Then, if ak > 0, the origin is a (topologically) saddle. If ak < 0 the origin is (1) a focus or a center
if bn = 0 and also if bn , 0 and n > m or if n = m and λ < 0, (2) a node if bn , 0 n is an
even number and n < m and also if bn , 0, n is an even number , n = m and λ ≥ 0 and (3) a
crıtic point with an elıptical sector if bn , 0, n is an odd number and n < m and also if bn , 0, n is
an odd number, n = m and λ ≥ 0.

Definition 2.6. [12] Let X = P
∂

∂x1
+ Q

∂

∂x2
be a polynomial vector field( the functions P and Q are

polynomials of arbitrary degree in the variables x1 and x2 and p(X) the Poincaré compactification of
the vector field X in R2. The expression for p(X) in the local chart (U1, φ1) is given by:
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u̇ = vd
[
− u P

(1
v
,

u
v

)
+ Q

(1
v
,

u
v

)]
v̇ = −vd+1 P

(1
v
,

u
v

)
.

The expression for (U2, φ2) is

u̇ = vd
[

P
(u
v
,

1
v

)
− u Q

(u
v
,

1
v

)]
v̇ = −vd+1 Q

(u
v
,

1
v

)
.

The Figure 3, taken from [12], shows a representation of the Poincaré compactification.

Figure 3. The local charts (Uk, φk) para k = 1, 2, 3 of the Poincaré sphere.

The definitions specified in this section are essential to understand the terminology used in the study,
and the theorems are fundamental to classify the stability of the critical points that exist in each of the
parametric regions defined in Section 3, which are established in order to determine the regions where
the parameters cause qualitative changes in the dynamics of the system called bifurcations (Section 6).

3. Parametric regions

In this section we divide the space R3 into parametric regions which are useful for the development
of the study.

Let us consider the following regions defined in R3:
B1 = {(a, b, c) | b2 + 4c < 0}
B2 = {(a, b, c) | b2 + 4c > 0, a = 0, c , 0}
B3 = {(a, b, c) | b2 + 4c = 0, a = 0, b , 0}
B4 = {(a, b, c) | b2 + 4c = 0, a , 0, b = 0, c = 0}
B5 = {(a, b, c) | b2 + 4c = 0, ab , 0}
B6 = {(a, b, c) | b2 + 4c > 0, ab , 0, c = 0}
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B7 = {(a, b, c) | b2 + 4c > 0, a , 0, c , 0}
B8 = {(a, b, c) | a = 0, c = 0} = {(a, b, c)| b2 + 4c = 0, a = c = 0} ∪ {(a, b, c)| b2 + 4c > 0, a = c = 0}.

Proposition 3.1. The family {Bk}
8
k=1 forms a partition of R3.

Proof. In fact, we have to
R3 = {(a, b, c)| b2 + 4c < 0, b2 + 4c = 0 and b2 + 4c > 0}
R3 = {(a, b, c)| b2 + 4c < 0} ∪ {(a, b, c)| b2 + 4c = 0} ∪ {(a, b, c)| b2 + 4c > 0}
R3 = {(a, b, c)| b2 + 4c < 0} ∪ {(a, b, c) | b2 + 4c = 0, a = 0, b , 0} ∪ {(a, b, c) | b2 + 4c = 0,
a , 0, b = 0, c = 0} ∪ {(a, b, c) | b2 + 4c = 0, ab , 0} ∪ {(a, b, c)| b2 + 4c = 0, a = c = 0} ∪
{(a, b, c)| b2 + 4c > 0, a = c = 0} ∪ {(a, b, c) | b2 + 4c > 0, a = 0, c , 0} ∪ {(a, b, c) | b2 + 4c > 0, ab ,
0, c = 0} ∪ {(a, b, c) | b2 + 4c > 0, a , 0, c , 0}
R3 = B1 ∪ B3 ∪ B4 ∪ B5 ∪ B8 ∪ B2 ∪ B6 ∪ B7 = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6 ∪ B7 ∪ B8

R3 =

8⋃
k=1

Bk.

Moreover, Bk ∩ B j = ∅ for j , k, where j, k ∈ {1, 2, ..., 8}.
Hence, {Bk}

8
k=1 is a partition of R3. �

4. Existence of critical points in parametric regions

In this section we analyze the existence of critical points in each of the parametric regions defined
previously for the system

ẋ = y
ẏ = (3ax + b) y + (−a2x2 − abx + c) x.

(4.1)

Proposition 4.1. Given the system (4.1) then it follows that:

1) If (a, b, c) ∈
4⋃

k=1

Bk , then (0, 0) is the only critical point.

2) If (a, b, c) ∈
6⋃

k=5

Bk , then the system has two critical points.

3) If (a, b, c) ∈ B7 , then the system has three critical points.
4) If (a, b, c) ∈ B8 , then the system has infinite critical points.

Proof. The proof of this proposition is based on the number of zeros possessed by the function:

g(x) = a2x2 + abx − c =

(
ax +

b
2

)2

−
b2 + 4c

4
.

1) If (a, b, c) ∈
4⋃

k=1

Bk then (a, b, c) ∈ B1 o (a, b, c) ∈ B2 or (a, b, c) ∈ B3 o (a, b, c) ∈ B4.

Analyzing each of the cases, we obtain the following:

a. If (a, b, c) ∈ B1 , we have that b2 + 4c < 0.

Since g(x) =

((
ax +

b
2

)2

−
b2 + 4c

4

)
> 0 then the system has a single critical point

corresponding to (0, 0).
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b. If (a, b, c) ∈ B2 , then b2 + 4c > 0 , a = 0 and c , 0. Also, g(x) = (0)2x2 + (0)bx − c = −c.
But c , 0, therefore, g(x) , 0. Thus, the only critical point is (0, 0).

c. If (a, b, c) ∈ B3 , then b2 + 4c = 0 , a = 0 and b , 0; g(x) = −c. Since b , 0 then c , 0,
therefore, g(x) , 0. Thus, the only critical point of the system is (0, 0).

d. If (a, b, c) ∈ B4 , then b2 + 4c = 0 , a , 0, b = 0 and c = 0; g(x) = a2x2. Since g(x) = 0 if
x = 0 and g(x) > 0 for x , 0 then (0, 0) is the only critical point.

In conclusion, it follows that if (a, b, c) ∈
4⋃

k=1

Bk , then (0, 0) is the only critical point.

2) If (a, b, c) ∈
6⋃

k=5

Bk then (a, b, c) ∈ B5 or (a, b, c) ∈ B6.

a. If (a, b, c) ∈ B5 , then b2 + 4c = 0 and ab , 0. Since b2 + 4c = 0 , then g(x) =

(
ax +

b
2

)2

.

Then, g(x) = 0 whenever x = −
b

2a
. Therefore, the system (4.1) has two critical points which

are (0, 0) and
(
−

b
2a
, 0

)
.

b. If (a, b, c) ∈ B6 , then b2 + 4c > 0, ab , 0 and c = 0; g(x) = a2x2 + abx = ax(ax + b).
Then, g(x) has two zeros. Thus, the system (4.1) has two critical points which are (0, 0) and(
−

b
a
, 0

)
.

In conclusion, if (a, b, c) ∈
6⋃

k=5

Bk , then the system has two critical points.

3) If (a, b, c) ∈ B7, then b2 + 4c > 0, a , 0 and c , 0. In addition, g(x) can be written as

g(x) =

(
ax +

b
2
−

√
b2 + 4c

2

)(
ax +

b
2

+

√
b2 + 4c

2

)
Therefore, g(x) = 0 whenever x =

−b −
√

b2 + 4c
2a

ór x =
−b +

√
b2 + 4c

2a
with a , 0 by

hypothesis. Also, g(x) has two zeros since b2 + 4c > 0.

As well, the system (4.1) has three critical points, which are (0, 0),
(
−b +

√
b2 + 4c

2a
, 0

)
and(

−b −
√

b2 + 4c
2a

, 0
)
.

4) If (a, b, c) ∈ B8 then a = 0 and c = 0, then the system (4.1) reduces to:

ẋ = y
ẏ = by.

(4.2)

Thus, the system has infinite critical points. �

In the next section we study the stability of the critical points of the system (4.1) in each of the
parametric regions.
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5. Stability in parametric regions

5.1. Stability in
4⋃

k=1

Bk

Proposition 5.1. Given the system (4.1) with (a, b, c) ∈ R3, then:

1) If (a, b, c) ∈ B1 and b > 0 , then (0, 0) is a repulsor focus.
2) If (a, b, c) ∈ B1 and b < 0 , then (0, 0) is an attractor focus.
3) If (a, b, c) ∈ B1, and b = 0 , then (0, 0) is a center.
4) If (a, b, c) ∈ B2 , then (0, 0) is a repulsor node if b > 0 and attractor if b < 0.
5) If (a, b, c) ∈ B2 and c > 0, then (0, 0) is a saddle point.
6) If (a, b, c) ∈ B3 , then (0, 0) is a repulsor node if b > 0 and attractor if b < 0.
7) If (a, b, c) ∈ B4 , then (0, 0) consists of the union of a hyperbolic sector and an elliptic sector.

Proof. For the system (4.1) the resulting Jacobian matrix evaluated at the critical point (0, 0)
corresponds to:

D f (0, 0) =

[
0 1
0 b

]
.

The eigenvalues corresponding to the critical point (0, 0) are:

λ1 =
b +
√

b2 + 4c
2

& λ2 =
b −
√

b2 + 4c
2

.

1) If (a, b, c) ∈ B1, then b2 + 4c < 0, this implies that λ1 =
b + i

√
−(b2 + 4c)
2

&

λ2 =
b − i

√
−(b2 + 4c)
2

. Therefore, if b > 0, (0, 0) is a repulsor focus.

2) If (a, b, c) ∈ B1, then b2 + 4c < 0, this implies that λ1 =
b + i

√
−(b2 + 4c)
2

&

λ2 =
b − i

√
−(b2 + 4c)
2

.
Then, if b < 0, (0, 0) is an attractor focus.

3) If (a, b, c) ∈ B1 , then b2 + 4c < 0. Now, if b = 0 we have that, λ1 = i
√
−c and λ2 = −i

√
−c.

Therefore, (0, 0) is a center.
4) If (a, b, c) ∈ B2 , then b2 + 4c > 0, a = 0 and c , 0. Note that λ1λ2 = −c. Now, if b > 0 and

c < 0 then λ1λ2 > 0. Since b > 0 then λ1 > 0 and consequently, λ2 > 0. Thus, it is concluded
that (0, 0) is a repulsor node. On the other hand, if b < 0 and c < 0 then λ1λ2 > 0 and λ2 < 0,
consequently, λ1 < 0. Therefore, (0, 0) is an attractor node.

5) If (a, b, c) ∈ B2 , then b2 + 4c > 0, a = 0 and c , 0. Now, if c > 0 then λ1λ2 < 0. Then, (0, 0) is
a saddle point.

6) If (a, b, c) ∈ B3 , then b2 + 4c = 0, a = 0 and b , 0. Therefore, λ1 = λ2 =
b
2

. Now, if b > 0 then
λ1 > 0 and λ2 > 0, therefore, (0, 0) is a repulsor node. On the other hand, if b < 0 then λ1 < 0
and λ2 < 0, therefore, (0, 0) is an attractor node.

7) If (a, b, c) ∈ B4 , then b2 + 4c = 0, a , 0, b = 0 and c = 0. The only critical point for
this system is (0, 0). The eigenvalues associated with the Jacobian matrix D f (0, 0) are λ1 = 0
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and λ2 = 0, theorem 2.4 is applied for the characterization of the critical point. Taking the data
of the associated system, we obtain that: k = 2m + 1, m = 1, ak = −a2 and n = m = 1. Thus,
λ = b2

n +4(m+1)ak and substituting we observe that λ = (3a)2 +4(1+1)(−a2), this is, λ = 9a2−8a2

and thus λ = a2 > 0. Therefore, analyzing the hypotheses of the theorem we see that the number
(3) is satisfied, with bn , 0, n odd, n = m and λ ≥ 0. Therefore, (0, 0) is a critical point with
an elliptic sector.

�

5.2. Stability in
6⋃

k=5

Bk

Proposition 5.2. Given the system (4.1) then

1) If (a, b, c) ∈ B5 , a , 0 and b > 0 then (0, 0) is a repulsor node and
(
−

b
2a
, 0

)
is a saddle-node

point.

2) If (a, b, c) ∈ B5 , a , 0 and b < 0 then (0, 0) is an attractor node and
(
−

b
2a
, 0

)
is a saddle-node

point.

3) If (a, b, c) ∈ B6 , a , 0 , b > 0 and c = 0 then (0, 0) is a saddle-node point and
(
−

b
a
, 0

)
is an

attractor node.
4) If (a, b, c) ∈ B6 , a , 0 , b < 0 and c = 0 then (0, 0) is a saddle-node point and

(
−

b
a
, 0

)
is a

repulsor node.

Proof. 1) If (a, b, c) ∈ B5 , then b2 + 4c = 0 and ab , 0. If we consider and a , 0 then the

eigenvalues of the Jacobian evaluated at (0, 0) are λ1 = λ2 =
b
2

. Then, if b > 0 then (0, 0) is a
repulsor node.

The eigenvalues of D f
(
−

b
2a
, 0

)
are λ1 = 0 and λ2 = −

b
2

. Since one of the eigenvalues of

the system is zero we proceed to apply the theorem 2.2. Doing the change of variables

u = x − x0. and v = y − y0 we obtain that u = x +
b

2a
and v = y. In addition, x = u −

b
2a

and
v = y.
Calculating ẋ and ẏ we obtain the system:

u̇ = v
v̇ = 3auv − 1

2bv − a2u3 − 1
2abu2.

We find the critical points of this system. Making u̇ = 0 we obtain that v = 0. Substituting this

expression in 3auv − 1
2bv − a2u3 − 1

2abu2 = 0 we obtain that u = −
b

2a
or u = 0. Therefore, the

only critical points are (0, 0) and
(
−

b
2a
, 0

)
. The critical point of interest in this case is (0, 0). The

Jacobian of this new system is

D f (u, v) =

[
0 1

3av − 3a2u2 − 2abu 3au − 1
2b

]
.
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Evaluating the critical point (0, 0) we get

D f (0, 0) =

[
0 1
0 −1

2b

]
.

The eigenvalues of D f (0, 0) are λ1 = 0 and λ2 = −
1
2

b. Now, by applying the theorem 2.2 we
obtain that: X(u, v) = v.
Let v be the solution of 3auv − 1

2bv − a2u3 − 1
2abu2 = 0. Therefore, clearing we obtain that:

v =
a2u3 − 1

2abu2

3au − 1
2b

.

g(u) = U(u, f (u)) =
a2u3 − 1

2abu2

3au − 1
2b

Doing the Taylor’s series development, we obtain that g(u) = au2 + .... Since m = 2 is even
then we apply the item 3 of the theorem 2.2 and we obtain that (0, 0) is a saddle-node point.

Consequently,
(
−

b
2a
, 0

)
is a saddle-node point of the original system.

1) If (a, b, c) ∈ B5 , then b2 +4c = 0 and ab , 0. If we take b2 +4c = 0 and a , 0 then the eigenvalues
of the Jacobian evaluated at (0, 0) are λ1 = λ2 = b

2 . Then, if b < 0 then (0, 0) is an attractor node.

Also,
(
−

b
2a
, 0

)
is saddle point for the previous item.

2) If (a, b, c) ∈ B6, then ab , 0 and c = 0. Taking a , 0, b > 0 and c = 0 we have that the critical

points of the system are (0, 0) and
(
−

b
a
, 0

)
. The eigenvalues of D f

(
−

b
a
, 0

)
are

λ1 = λ2 = −b.

Therefore, si b > 0, then
(
−

b
a
, 0

)
is an attractor node.

For the critical point (0, 0) the eigenvalues are λ1 = 0 and λ2 = b, this is, we must use a criterion
for the analysis of semi-hyperbolic critical points [12].
On the system (4.1) with c = 0, let’s perform the change of variables u = bx − y, which gives rise
to the topologically equivalent system

u̇ = −
3a
b

(u + y)y +
a
b

(u + y)2 +
a2

b3 (u + y)3

ẏ = by +
3a
b

(u + y)y +
a
b

(u + y)2 +
a2

b3 (u + y)3

Now identifying the elements of the theorem,we have λ = b,
A(u, y) = −3a

b (u + y)y + a
b (u + y)2 + a2

b3 (u + y)3

B(u, y) = 3a
b (u + y)y + a

b (u + y)2 + a2

b3 (u + y)3(deg(B(u, y)) ≥ 2).

If we calculate the solution of the equation λy + B(u, y) = 0 in Taylor’s series expansion we have
y = f (u) = − a

b2 u2 + O(u2), g(u) = Div(A, B)|(u, f (u)) = a
bu2 + O(u2) then m = 2 and am = a/b.

So, under the above conditions, it follows that (0, 0) is a critical saddle-node point.
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3) If (a, b, c) ∈ B6, then ab , 0 and c = 0. Taking a , 0, b < 0 and c = 0, we have that the critical

points of the system are (0, 0) and
(
−

b
a
, 0

)
. Using a procedure analogous to the previous item,

we obtain that if b < 0 then
(
−

b
a
, 0

)
is a repulsor node and (0, 0) is a saddle point.

�

5.3. Stability in B7

Proposition 5.3. Given the system (4.1) then
1) If (a, b, c) ∈ B7, b2 + 4c > 0 , a , 0, b > 0 and c > 0 then (0, 0) is a saddle point,(
−b +

√
b2 + 4c

2a
, 0

)
is a repulsor node and

(
−b −

√
b2 + 4c

2a
, 0

)
is an attractor node.

2) If (a, b, c) ∈ B7, b2 + 4c > 0 , a , 0, b > 0 and c < 0, then (0, 0) is a repulsor node,(
−b +

√
b2 + 4c

2a
, 0

)
is a saddle point and

(
−b −

√
b2 + 4c

2a
, 0

)
is an attractor node.

3) If (a, b, c) ∈ B7, b2 + 4c > 0 , a , 0, b < 0 and c > 0, then (0, 0) is a saddle point,(
−b +

√
b2 + 4c

2a
, 0

)
is a repulsor node and

(
−b −

√
b2 + 4c

2a
, 0

)
is an attractor node.

4) If (a, b, c) ∈ B7, b2 + 4c > 0 , a , 0, b < 0 and c < 0, then (0, 0) is an attractor node,(
−b +

√
b2 + 4c

2a
, 0

)
is a repulsor node and

(
−b −

√
b2 + 4c

2a
, 0

)
is a saddle point.

5) If (a, b, c) ∈ B7, a , 0, c > 0 and b = 0 then (0, 0) is a saddle point,
( √c

a
, 0

)
is a repulsor

node and
(
−

√
c

a
, 0

)
is an attractor node.

Proof. For the system (4.1) the resulting Jacobian matrix evaluated at the critical point P0 = (0, 0)
corresponds to:

D f (P0) =

[
0 1
c b

]
.

The eigenvalues of the matrix D f (P0) are

λ1 =
b +
√

b2 + 4c
2

& λ2 =
b −
√

b2 + 4c
2

.

Let P1 =

(
−b +

√
b2 + 4c

2a
, 0

)
, then the eigenvalues of the matrix D f (P1) are:

λ1 =
√

b2 + 4c & λ2 =
−b +

√
b2 + 4c

2
.

Also, if we take P2 =

(
−b −

√
b2 + 4c

2a
, 0

)
, the eigenvalues of the matrix D f (P2) would be:

λ1 =
−b −

√
b2 + 4c

2
& λ2 = −

√
b2 + 4c.

Now:
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1) If (a, b, c) ∈ B7, then b2 + 4c > 0, a , 0 and c , 0. Considering b2 + 4c > 0, a , 0, c > 0 and
b > 0. For the critical point P0 we have that λ1 λ2 = −c. Since c > 0, then λ1 λ2 < 0, i.e., one
eigenvalue is positive and the other negative, therefore, P0 is a saddle point. For the critical point
P1, we have that λ1 > 0 and λ2 > 0, so P1 is a repulsor node. For the critical point P2, λ1 < 0 and
λ2 < 0, therefore, P2 is an attractor node.

2) If (a, b, c) ∈ B7, then b2 + 4c > 0, a , 0 and c , 0. Let a , 0, b > 0 and c < 0, then
λ1 λ2 = −c > 0 and λ1 > 0, therefore, P0 is a repulsor node. For the critical point P1, λ2 < 0 and
λ1 > 0, therefore, P1 is a saddle point. For the critical point P2 we have that λ1 < 0 and λ2 < 0,
then P2 is an attractor node.

3) If (a, b, c) ∈ B7, then b2 + 4c > 0, a , 0 and c , 0. Let’s take a , 0, c > 0 and b < 0, then
for the critical point P0 we have that, λ1 λ2 = −c < 0, therefore, P0 is a saddle point. For the
critical point P1, since λ1 > 0 and λ2 > 0, then P1 is a repulsor node. For the critical point P2, it
happens that λ2 < 0 and λ1 < 0 then P2 is an attractor node.

4) If (a, b, c) ∈ B7, then b2 + 4c > 0, a , 0 and c , 0. When a , 0, c < 0 and b < 0, for the
critical point P0, λ1 λ2 > 0 and λ1 < 0, then P0 is an attractor node. For the critical point P1,
we have that λ1 > 0 and λ2 > 0, then, P1 is a repulsor node. For the critical point P2, we have
that λ2 < 0 and Therefore, λ1 > 0. Then, P2 is a saddle point.

5) If (a, b, c) ∈ B7, then b2 + 4c > 0, a , 0 and c , 0. If we consider a , 0 , c > 0 and b = 0, then

the critical points of the system are reduced to (0, 0),
(√ c

a2 , 0
)

and
(
−

√
c
a2 , 0

)
.

For the critical point (0, 0) ,the eigenvalues of the matrix D f (0, 0) are λ1,2 = ±
√

c, i.e., (0, 0) is a
saddle point.

For the critical point
(√ c

a2 , 0
)

, the eigenvalues of D f
(√ c

a2 , 0
)

are

λ1 = 2
√

c & λ2 =
√

c.

Then, the critical point
(√ c

a2 , 0
)

is a repulsor node.

For the critical point
(
−

√
c
a2 , 0

)
,the eigenvalues of the matrix D f

(
−

√
c
a2 , 0

)
are

λ1 = −
√

c & λ2 = 2
√

c

Then the point is an attractor node.

�

In the following section we study the bifurcations of the system (4.1).

6. Bifurcation analysis

Let us consider in B7 the following subsets:
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W1 = {(a, b, c) | b2 + 4c > 0, a , 0, b > 0, c > 0}

W2 = {(a, b, c) | b2 + 4c > 0, a , 0, b < 0, c < 0}.

Proposition 6.1. The system undergoes a transcritical bifurcation for each element in the region B4.

Proof. Sean P0 = (0, 0) and P2 =

(
−b −

√
b2 + 4c

2a
, 0

)
then:

a) If (a, b, c) ∈ W2, for the Proposition 5.3, P0 is an attractor node and P2 is a saddle point (Figure 4).
b) If (a, b, c) ∈ B4, by Proposition 5.1, P0 and P2 collide at a non-hyperbolic critical point consisting
of the junction of a hyperbolic sector and an elliptic sector (Figure 5).
c) When (a, b, c) ∈ W1, for the Proposition 5.3, P0 and P2 exchange their stability, i.e., P0 is a saddle
point and P2 is an attractor node (Figure 6). Therefore, the system undergoes a transcritical bifurcation
for all elements of B4.

Figure 4. P0 is an attractor node and P2 is a saddle point in W2.

Figure 5. P0 and P2 collide at a non-hyperbolic critical point en B4.

Figure 6. P0 is a saddle point and P2 is an attractor node in W1

�

AIMS Mathematics Volume 7, Issue 8, 13803–13820.



13817

7. Singularities in infinity

System of differential equations at infinity on the chart U1 of the system (4.1) is given by

u̇ = −u2 v2 + 3auv + buv2 − a2 − abv + cv2

v̇ = −uv3.
(7.1)

Similarly, we obtain that:

1) If a , 0 then the system has no critical points.
2) If a = 0 and b2 + 4c < 0, then the system has no critical points.
3) If a = 0, c = 0 and b , 0 then (b, 0) is an attractor node (repulsor) if b > 0 (b < 0) and

(0, 0) is a topological chair or node.

4) If a = 0, b2 + 4c = 0 and b , 0 , then
(b
2
, 0

)
is a saddle-node point.

5) If a = 0, b = 0 and c = 0, then (0, 0) is a repulsor node for u < 0 and attractor for u > 0.
6) If a = 0, b = 0 and c > 0, then (

√
c, 0) is an atract node and (−

√
c, 0) is a repulsor node.

7) If b2 + 4c > 0, a = 0, b > 0 and c > 0, then
(b +

√
b2 + 4c
2

, 0
)

is an attractor node and(b −
√

b2 + 4c
2

, 0
)

is a repulsor node.

8) If b2 + 4c > 0, a = 0, b < 0 and c > 0, then
(b +

√
b2 + 4c
2

, 0
)

is an attractor node and(b −
√

b2 + 4c
2

, 0
)

is a repulsor node.

9) If b2 + 4c > 0, a = 0, b < 0 and c < 0, then
(b +

√
b2 + 4c
2

, 0
)

is a saddle point and(b −
√

b2 + 4c
2

, 0
)

is a repulsor node.

10) If b2 + 4c > 0, a = 0, b > 0 and c < 0, then
(b +

√
b2 + 4c
2

, 0
)

is an attractor node and(b −
√

b2 + 4c
2

, 0
)

is a saddle point.

System of differential equations at infinity on the chart U2 of the system (4.1) is given by

u̇ = v2 − 3au2v − buv2 + a2u4 + abu3v − cu2v2

v̇ = −3auv2 − bv3 + a2u3v + abu2v2 − cuv3.
(7.2)

Similarly, we obtain that:

1) If a , 0, then (0, 0) is a critical point with elliptical domain.
2) If a = 0 and b2 + 4c < 0, then the system has no critical points.

3) If a = 0, c = 0 and b , 0 then
(1
b
, 0

)
is an attractor node (repulsor) if b > 0 (b < 0).

4) If a = 0, b2 + 4c = 0 and b , 0 , then
(
−

b
2c
, 0

)
is a saddle-node point.

5) If a = 0, b = 0 and c = 0, then the system has no critical points.
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6) If a = 0, b = 0 and c > 0, then
( 1
√

c
, 0

)
is an attractor node and

(
−

1
√

c
, 0

)
is a repulsor node.

7) If b2 + 4c > 0, a = 0, b > 0 and c > 0, then
(b +

√
b2 + 4c
2c

, 0
)

is an attractor node and(b −
√

b2 + 4c
2c

, 0
)

is a repulsor node.

8) If b2 + 4c > 0, a = 0, b < 0 and c > 0, then
(
−b +

√
b2 + 4c

2c
, 0

)
is an attractor node and(

−b −
√

b2 + 4c
2c

, 0
)

is a repulsor node.

9) If b2 + 4c > 0, a = 0, b < 0 and c < 0, then
(
−b +

√
b2 + 4c

2c
, 0

)
is a saddle point and(

−b −
√

b2 + 4c
2c

, 0
)

is a repulsor node.

10) If b2 + 4c > 0, a = 0, b > 0 and c < 0, then
(
−b +

√
b2 + 4c

2c
, 0

)
is an attractor node and(

−b −
√

b2 + 4c
2c

, 0
)

is a saddle point.

8. Global phase portraits

HThis section shows the overall phase portrait of the system (4.1) on the Poincaré disk. The red dot
represents a repulsor node, the blue one an attractor node, the green one a saddle point and the pink
one a saddle-node point (in Figure 7).

9. Conclusions

In this article, we have performed a qualitative analysis of a multiparametric nonlinear system,
which arises from the foliation of exercise 10 in [ [13], 1.3.3] for the case n = 1 and k = 1. The system
studied in this work presents critical points in the parametric regions and a transcritical bifurcation
for a region of points R3. In addition, the system analyzed in this article is potentially applicable to
perform various studies such as in [14]. Also, according to [13] the analyzed system allows studies
associated with the theory of heat and mass transfer, nonlinear mechanics, elasticity, hydrodynamics,
theory of nonlinear oscillations, theory of combustion, chemical engineering science, etc. As an added
value of this research, the scientific and academic community is provided with a methodology to study
bifurcations of multiparametric nonlinear systems, which begins with the definition of the parametric
regions that determine the stability of the system and ends with the obtaining of the region of points
where the bifurcation occurs.
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(a) b2 + 4c < 0 and b > 0. (b) b2 + 4c < 0 and b < 0. (c) b2 + 4c > 0, a , 0, b > 0 and c > 0.

(d) b2 + 4c > 0, a , 0, b > 0 and c < 0. (e) b2 + 4c > 0, a , 0, b < 0 and c > 0. (f) b2 + 4c > 0, a , 0, b < 0 and c < 0.

(g) b2 + 4c = 0, a , 0 and b > 0. (h) b2 + 4c = 0, a , 0 and b < 0. (i) a , 0, c > 0 and b = 0.

Figure 7. Global phase portraits for system (4.1).
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