Research article

Li-Yorke chaotic property of cookie-cutter systems

  • Received: 25 January 2022 Revised: 07 April 2022 Accepted: 11 April 2022 Published: 10 May 2022
  • MSC : 11K55, 34C28

  • In this paper, we investigate mean Li-Yorke chaos along some sequence and Li-Yorke chaos for cookie-cutter systems. By applying bounded distortion and a locally $ \alpha $-H$ \ddot{\rm{o}} $lder condition, we show that the cookie-cutter set contains a mean Li-Yorke scrambled set along some sequence in which the Hausdorff dimension equals the Hausdorff dimension of the cookie-cutter set. That is to say, a cookie-cutter system is mean Li-Yorke chaotic along some sequence. Meanwhile, we proved that every mean Li-Yorke scrambled set is also a scrambled set; hence a cookie-cutter system is also Li-Yorke chaotic.

    Citation: Alqahtani Bushra Abdulshakoor M, Weibin Liu. Li-Yorke chaotic property of cookie-cutter systems[J]. AIMS Mathematics, 2022, 7(7): 13192-13207. doi: 10.3934/math.2022727

    Related Papers:

  • In this paper, we investigate mean Li-Yorke chaos along some sequence and Li-Yorke chaos for cookie-cutter systems. By applying bounded distortion and a locally $ \alpha $-H$ \ddot{\rm{o}} $lder condition, we show that the cookie-cutter set contains a mean Li-Yorke scrambled set along some sequence in which the Hausdorff dimension equals the Hausdorff dimension of the cookie-cutter set. That is to say, a cookie-cutter system is mean Li-Yorke chaotic along some sequence. Meanwhile, we proved that every mean Li-Yorke scrambled set is also a scrambled set; hence a cookie-cutter system is also Li-Yorke chaotic.



    加载中


    [1] S. P. Baker, A multifractal zeta function for Gibbs measures supported on cookie-cutter sets, Nonlinearity, 26 (2013), 1125–1142. https://doi.org/10.1088/0951-7715/26/4/1125 doi: 10.1088/0951-7715/26/4/1125
    [2] F. Balibrea, V. J. López, The measure of scrambled sets: A survey, Acta Univ. M. Belii Ser. Math., 7 (1999), 3–11.
    [3] J. Barral, S. Seuret, The singularity spectrum of the inverse of cookie-cutters, Ergod. Th. & Dynam. Syst., 29 (2009), 1075–1095. https://doi.org/10.1017/S0143385708000618 doi: 10.1017/S0143385708000618
    [4] T. Bedford, Applications of dynamical systems theory to fractal sets: A study of cookie-cutter sets, Fractal Geometry Anal., 346 (1991), 1–44. https://doi.org/10.1007/978-94-015-7931-5_1 doi: 10.1007/978-94-015-7931-5_1
    [5] F. Blanchard, E. Glasner, S. Kolyada, A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51–68. https://doi.org/10.1515/crll.2002.053 doi: 10.1515/crll.2002.053
    [6] F. Blanchard, B. Host, S. Ruette, Asymptotic pairs in positive-entropy systems, Ergod. Theory Dynam. Syst., 22 (2002), 671–686. https://doi.org/10.1017/S0143385702000342 doi: 10.1017/S0143385702000342
    [7] Y. F. Blanchard, W. Huang, L. Snoha, Topological size of scrambled sets, Colloq. Math., 110 (2008), 293–361. https://doi.org/10.4064/cm110-2-3 doi: 10.4064/cm110-2-3
    [8] H. Bruin, V. J. López, On the Lebesgue measure of Li-Yorke pairs for interval maps, Comm. Math. Phys., 299 (2010), 523–560. https://doi.org/10.1007/s00220-010-1085-9 doi: 10.1007/s00220-010-1085-9
    [9] J. S. Cánovas, Li-Yorke chaos in a class of nonautonmous discrete systems, J. Difference Equ. Appl., 17 (2011), 479–486. https://doi.org/10.1080/10236190903049025 doi: 10.1080/10236190903049025
    [10] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2 Eds., Redwood City: Addison-Wesley Studies in Nonlinearity, 1989.
    [11] T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Am. Math. Soc., 142 (2014), 137–149. https://doi.org/10.1090/S0002-9939-2013-11717-X doi: 10.1090/S0002-9939-2013-11717-X
    [12] R. A. El-Nabulsi, Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic carrier concentrations, J. Phys. Chem. Sol., 127 (2019), 224–230. https://doi.org/10.1016/j.jpcs.2018.12.025 doi: 10.1016/j.jpcs.2018.12.025
    [13] R. A. El-Nabulsi, W. Anukool, A mapping from Schrodinger equation to Navier-Stokes equations through the product-like fractal geometry, fractal time derivative operator and variable thermal conductivity, Acta Mechanica, 232 (2021), 5031–5039. https://doi.org/10.1007/s00707-021-03090-6 doi: 10.1007/s00707-021-03090-6
    [14] K. J. Falconer, Techniques in Fractal Geometry, New York: John Wiley & Sons, 1997.
    [15] A. H. Fan, L. M. Liao, M. Wu, Multifractal analysis of some multiple ergodic averages in linear cookie-cutter dynamical systems, Math. Z., 290 (2018), 63–81. https://doi.org/10.1007/s00209-017-2008-7 doi: 10.1007/s00209-017-2008-7
    [16] F. Garcia-Ramos, L. Jin, Mean proximality and mean Li-Yorke chaos, Proc. Am. Math. Soc., 145 (2017), 2959–2969. https://doi.org/10.1090/proc/13440 doi: 10.1090/proc/13440
    [17] P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors, Physica D., 9 (1983), 189–208. https://doi.org/10.1016/0167-2789(83)90298-1 doi: 10.1016/0167-2789(83)90298-1
    [18] W. Huang, X. Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topol. Appl., 117 (2002), 259–272. https://doi.org/10.1016/S0166-8641(01)00025-6 doi: 10.1016/S0166-8641(01)00025-6
    [19] S. F. Kolyada, Li-Yorke sensitivity and other concepts of chaos, Ukr. Math. J., 56 (2004), 1242–1257. https://doi.org/10.1007/s11253-005-0055-4 doi: 10.1007/s11253-005-0055-4
    [20] J. Li, Y. Qiao, Mean Li-Yorke chaos along some good sequences, Monatsh. Math., 186 (2018), 153–173. https://doi.org/10.1007/s00605-017-1086-2 doi: 10.1007/s00605-017-1086-2
    [21] J. Li, X. D. Ye, Recent development of chaos theory in topological dynamics, Acta Math. Sin., 32 (2016), 83–114. https://doi.org/10.1007/s10114-015-4574-0 doi: 10.1007/s10114-015-4574-0
    [22] T. Y. Li, J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985–992. https://doi.org/10.1080/00029890.1975.11994008 doi: 10.1080/00029890.1975.11994008
    [23] J. R. Liang, Z. G. Yu, F. Y. Ren, Measures and their dimension spectrums for cookie-cutter sets in $\mathbb{R}^{d}$, Acta Math. Appl. Sin., 16 (2000), 9–21. https://doi.org/10.1007/BF02670959 doi: 10.1007/BF02670959
    [24] Q. H. Liu, Cookie-cutter-like dynamic system of unbounded expansion, Difference Equations, Discrete Dynamical Syst. Appl., 8 (2015), 109–117. https://doi.org/10.1007/978-3-319-24747-2_8 doi: 10.1007/978-3-319-24747-2_8
    [25] W. B. Liu, C. Huang, L. M. Li, S. L. Wang, A construction of the scrambled set with full Hausdorff dimension for beta-transformations, Fractals, 26 (2018), 1850005. https://doi.org/10.1142/S0218348X18500056 doi: 10.1142/S0218348X18500056
    [26] W. B. Liu, S. L. Wang, Mean Li-Yorke chaotic set with full Hausdorff dimension for continued fractions, Fractals, 29 (2021), 2150258. https://doi.org/10.1142/S0218348X21502583 doi: 10.1142/S0218348X21502583
    [27] W. B. Liu, B. Li, Chaotic and topological properties of continued fractions, J. Number Theory, 174 (2017), 585–596. https://doi.org/10.1016/j.jnt.2016.10.019 doi: 10.1016/j.jnt.2016.10.019
    [28] H. Liu, L. D. Wang, Z. Y. Chu, Devaney's chaos inplies distributional chaos in a sequence, Nonlinear Anal., 71 (2009), 6144–6147. https://doi.org/10.1016/j.na.2009.06.007 doi: 10.1016/j.na.2009.06.007
    [29] J. H. Ma, H. Rao, Z. Y. Wen, Dimensions of cookie-cutter-like sets, Sci. China Ser. A., 44 (2001), 1400–1412. https://doi.org/10.1007/BF02877068 doi: 10.1007/BF02877068
    [30] K. B. Mangang, Mean equicontinuity, sensitivity, expansiveness and distality of product dynamical systems, J. Dyn. Syst. Geom. The., 13 (2015), 27–33. https://doi.org/10.1080/1726037X.2015.1027106 doi: 10.1080/1726037X.2015.1027106
    [31] M. A. Martin, P. Mattila, Hausdorff measures, Hölder continuous maps and self-similar fractals, Math. Poc. Camb. Philo. Soc., 114 (1993), 37–42. https://doi.org/10.1017/S0305004100071383 doi: 10.1017/S0305004100071383
    [32] T. Nakata, An approximation of Hausdorff dimensions of generalized cookie-cutter Cantor sets, Hiroshima Math. J., 27 (1997), 467–475. https://doi.org/10.32917/hmj/1206126964 doi: 10.32917/hmj/1206126964
    [33] M. Nag, S. Poria, Li-Yorke chaos in globally coupled map lattice with delays, Int. J. Bif. Chaos, 29 (2019), 1950183. https://doi.org/10.1142/S0218127419501839 doi: 10.1142/S0218127419501839
    [34] B. Schweizer, J. Sm$\mathop {\rm{i}}\limits^{\prime}$tal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Am. Math. Soc., 344 (1994), 737–754. https://doi.org/S0002-9947-1994-1227094-X
    [35] D. R. Stockman, Li-Yorke chaos in models with backward dynamics, Studies Nonl. Dyn. Econom., 20 (2016), 587–606. https://doi.org/10.1515/snde-2015-0076 doi: 10.1515/snde-2015-0076
    [36] L. Wang, G. Huang, S. Huan, Distributional chaos in a sequence, Nonlinear Anal., 67 (2007), 2131–2136. https://doi.org/10.1016/j.na.2006.09.005 doi: 10.1016/j.na.2006.09.005
    [37] X. X. Wu, P. Y. Zhu, Li-Yorke chaos in a coupled lattice system related with Belusov-Zhabotinskii reaction, J. Math. Chem., 50 (2012), 1304–1308. https://doi.org/10.1007/s10910-011-9971-8 doi: 10.1007/s10910-011-9971-8
    [38] Y. F. Xiao, Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $\beta$-transformation, Discrete Cont. Dyn-A, 41 (2021), 525–536. https://doi.org/10.3934/dcds.2020267 doi: 10.3934/dcds.2020267
    [39] J. Xiong, Hausdorff dimension of a chaotic set of shift of a symbolic space, Sci. China, 38 (1995), 696–708.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1461) PDF downloads(76) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog