Research article

Some new identities of a type of generalized numbers involving four parameters

  • Received: 16 March 2022 Revised: 25 April 2022 Accepted: 26 April 2022 Published: 07 May 2022
  • MSC : 11B39, 11B83

  • This article deals with a Horadam type of generalized numbers involving four parameters. These numbers generalize several celebrated numbers in the literature such as the generalized Fibonacci, generalized Lucas, Fibonacci, Lucas, Pell, Pell-Lucas, Fermat, Fermat-Lucas, Jacobsthal, Jacobsthal-Lucas, balancing, and co-balancing numbers. We present some new identities concerned with the generalized numbers of four parameters. An explicit expression for these numbers is developed, and a mixed recurrence relation between two certain families of the generalized numbers is given, and after that, some new identities are presented and proved. A large number of identities between several celebrated numbers are obtained as special cases of our developed ones. Furthermore, some of the identities that were previously published in other articles can be deduced as special ones of our new identities.

    Citation: Waleed Mohamed Abd-Elhameed, Amr Kamel Amin, Nasr Anwer Zeyada. Some new identities of a type of generalized numbers involving four parameters[J]. AIMS Mathematics, 2022, 7(7): 12962-12980. doi: 10.3934/math.2022718

    Related Papers:

  • This article deals with a Horadam type of generalized numbers involving four parameters. These numbers generalize several celebrated numbers in the literature such as the generalized Fibonacci, generalized Lucas, Fibonacci, Lucas, Pell, Pell-Lucas, Fermat, Fermat-Lucas, Jacobsthal, Jacobsthal-Lucas, balancing, and co-balancing numbers. We present some new identities concerned with the generalized numbers of four parameters. An explicit expression for these numbers is developed, and a mixed recurrence relation between two certain families of the generalized numbers is given, and after that, some new identities are presented and proved. A large number of identities between several celebrated numbers are obtained as special cases of our developed ones. Furthermore, some of the identities that were previously published in other articles can be deduced as special ones of our new identities.



    加载中


    [1] T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, 2011.
    [2] U. K. Dutta, P. K. Ray, On the finite reciprocal sums of Fibonacci and Lucas polynomials, AIMS Mathematics, 4 (2019), 1569–1581. https://doi.org/10.3934/math.2019.6.1569 doi: 10.3934/math.2019.6.1569
    [3] W. C. Chu, N. N. Li, Power sums of Fibonacci and Lucas numbers, Quaest. Math., 34 (2011), 75–83. https://doi.org/10.2989/16073606.2011.570298 doi: 10.2989/16073606.2011.570298
    [4] R. Battaloglu, Y. Simsek, On new formulas of Fibonacci and Lucas numbers involving golden ratio associated with atomic structure in chemistry, Symmetry, 13 (2021), 1334. https://doi.org/10.3390/sym13081334 doi: 10.3390/sym13081334
    [5] V. E. Hoggatt, M. Bicknell, Roots of Fibonacci polynomials, Fibonacci Quart., 11 (1973), 271–274.
    [6] Y. K. Ma, W. P. Zhang, Some identities involving Fibonacci polynomials and Fibonacci numbers, Mathematics, 6 (2018), 334. https://doi.org/10.3390/math6120334 doi: 10.3390/math6120334
    [7] P. Trojovskỳ, Fibonacci numbers with a prescribed block of digits, Mathematics, 8 (2020), 639. https://doi.org/10.3390/math8040639 doi: 10.3390/math8040639
    [8] W. M. Abd-Elhameed, Y. H. Youssri, N. El-Sissi, M. Sadek, New hypergeometric connection formulae between Fibonacci and Chebyshev polynomials, Ramanujan J., 42 (2017), 347–361. https://doi.org/10.1007/s11139-015-9712-x doi: 10.1007/s11139-015-9712-x
    [9] W. M. Abd-Elhameed, N. A. Zeyada, New formulas including convolution, connection and radicals formulas of k-Fibonacci and k-Lucas polynomials, Indian J. Pure Appl. Math., 2022. https://doi.org/10.1007/s13226-021-00214-5
    [10] J. B. Muskat, Generalized Fibonacci and Lucas sequences and rootfinding methods, Math. Comp., 61 (1993), 365–372. https://doi.org/10.1090/S0025-5718-1993-1192974-3 doi: 10.1090/S0025-5718-1993-1192974-3
    [11] P. Trojovskỳ, On terms of generalized Fibonacci sequences which are powers of their indexes, Mathematics, 7 (2019), 700. https://doi.org/10.3390/math7080700 doi: 10.3390/math7080700
    [12] E. Özkan, İ Altun, A. Göçer, On relationship among a new family of k-Fibonacci, k-Lucas numbers, Fibonacci and Lucas numbers, Chiang Mai J. Sci., 44 (2017), 1744–1750.
    [13] H. H. Gulec, N. Taskara, K. Uslu, A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients, Appl. Math. Comput., 220 (2013), 482–486. https://doi.org/10.1016/j.amc.2013.05.043 doi: 10.1016/j.amc.2013.05.043
    [14] Y. Yazlik, N. Taskara, A note on generalized-Horadam sequence, Comput. Math. Appl., 63 (2012), 36–41. https://doi.org/10.1016/j.camwa.2011.10.055 doi: 10.1016/j.camwa.2011.10.055
    [15] P. K. Ray, Identities concerning k-balancing and k-Lucas-balancing numbers of arithmetic indexes, AIMS Mathematics, 4 (2019), 308–315. https://doi.org/10.3934/math.2018.2.308 doi: 10.3934/math.2018.2.308
    [16] O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput., 217 (2011), 5603–5611. https://doi.org/10.1016/j.amc.2010.12.038 doi: 10.1016/j.amc.2010.12.038
    [17] A. P. Chaves, P. Trojovskỳ, A quadratic Diophantine equation involving generalized Fibonacci numbers, Mathematics, 8 (2020), 1010. https://doi.org/10.3390/math8061010 doi: 10.3390/math8061010
    [18] D. Andrica, O. Bagdasar, Pseudoprimality related to the generalized Lucas sequences, Math. Comput. Simulat., 2021. (In press). https://doi.org/10.1016/j.matcom.2021.03.003
    [19] D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math., 18 (2021), 47. https://doi.org/10.1007/s00009-020-01653-w doi: 10.1007/s00009-020-01653-w
    [20] U. Bednarz, M. Wołowiec-Musiał, Distance Fibonacci polynomials, Symmetry, 12 (2020), 1540. https://doi.org/10.3390/sym12091540 doi: 10.3390/sym12091540
    [21] Y. Choo, On the reciprocal sums of products of balancing and Lucas-balancing numbers, Mathematics, 9 (2021), 350. https://doi.org/10.3390/math9040350 doi: 10.3390/math9040350
    [22] S. Çelik, I. Durukan, E. Özkan, New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers, Chaos Soliton. Fract., 150 (2021), 111173. https://doi.org/10.1016/j.chaos.2021.111173 doi: 10.1016/j.chaos.2021.111173
    [23] P. Trojovskỳ, S. Hubálovskỳ, Some Diophantine problems related to k-Fibonacci numbers, Mathematics, 8 (2020), 1047. https://doi.org/10.3390/math8071047 doi: 10.3390/math8071047
    [24] E. Tchammou, A. Togbé, On some Diophantine equations involving balancing numbers, Arch. Math., 57 (2021), 113–130. https://doi.org/10.5817/AM2021-2-113 doi: 10.5817/AM2021-2-113
    [25] J. J. Bravo, J. L. Herrera, F. Luca, On a generalization of the Pell sequence, Math. Bohem., 146 (2021), 199–213. https://doi.org/10.21136/MB.2020.0098-19 doi: 10.21136/MB.2020.0098-19
    [26] W. M. Abd-Elhameed, Y. H. Youssri, A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: Spectral solutions of fractional differential equations, Entropy, 18 (2016), 345. https://doi.org/10.3390/e18100345 doi: 10.3390/e18100345
    [27] W. M. Abd-Elhameed, Y. H. Youssri, Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 543–554. https://doi.org/10.1007/s40995-017-0420-9 doi: 10.1007/s40995-017-0420-9
    [28] W. M. Abd-Elhameed, Y. H Youssri, Generalized Lucas polynomial sequence approach for fractional differential equations, Nonlinear Dyn., 89 (2017), 1341–1355. https://doi.org/10.1007/s11071-017-3519-9 doi: 10.1007/s11071-017-3519-9
    [29] W. M. Abd-Elhameed, Y. H. Youssri, Spectral solutions for fractional differential equations via a novel Lucas operational matrix of fractional derivatives, Rom. J. Phys., 61 (2016), 795–813.
    [30] M. Irfan, F. A. Shah, Fibonacci wavelet method for solving the time-fractional bioheat transfer model, Optik, 241 (2021), 167084. https://doi.org/10.1016/j.ijleo.2021.167084 doi: 10.1016/j.ijleo.2021.167084
    [31] B. P. Moghaddam, A. Dabiri, A. M. Lopes, J. A. T. Machado, Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials, Comput. Appl. Math., 38 (2019), 46. https://doi.org/10.1007/s40314-019-0813-9 doi: 10.1007/s40314-019-0813-9
    [32] Y. H. Youssri, W. M. Abd-Elhameed, A. S. Mohamed, S. M. Sayed, Generalized Lucas polynomial sequence treatment of fractional pantograph differential equation, Int. J. Appl. Comput. Math., 7 (2021), 27. https://doi.org/10.1007/s40819-021-00958-y doi: 10.1007/s40819-021-00958-y
    [33] W. M. Abd-Elhameed, N. A. Zeyada, New identities involving generalized Fibonacci and generalized Lucas numbers, Ind. J. Pure Appl. Math., 49 (2018), 527–537. https://doi.org/10.1007/s13226-018-0282-7 doi: 10.1007/s13226-018-0282-7
    [34] B. Sury, A polynomial parent to a Fibonacci–Lucas relation, Am. Math. Mon., 121 (2014), 236. https://doi.org/10.4169/amer.math.monthly.121.03.236 doi: 10.4169/amer.math.monthly.121.03.236
    [35] D. Marques, A new Fibonacci–Lucas relation, Am. Math. Mon., 122 (2015), 683.
    [36] W. M. Abd-Elhameed, N. A. Zeyada, A generalization of generalized Fibonacci and generalized Pell numbers, Int. J. Math. Edu. Sci. Technol., 48 (2017), 102–107. https://doi.org/10.1080/0020739X.2016.1170900 doi: 10.1080/0020739X.2016.1170900
    [37] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3 (1965), 161–176.
    [38] A. F. Horadam, Generating functions for powers of a certain generalised sequence of numbers, Duke Math. J., 32 (1965), 437–446. https://doi.org/ 10.1215/S0012-7094-65-03244-8 doi: 10.1215/S0012-7094-65-03244-8
    [39] H. Feng, Z. Z. Zhang, Computational formulas for convoluted generalized Fibonacci and Lucas numbers, Fibonacci Quart., 41 (2003), 144–151.
    [40] R. Melham, Generalizations of some identities of Long, Fibonacci Quart., 37 (1999), 106–110.
    [41] A. F. Horadam, Associated sequences of general order, Fibonacci Quart., 31 (1993), 166–172.
    [42] W. Koepf, Hypergeometric summation, an algorithmic approach to summation and special function identities, 2 Eds., Springer Universitext Series, 2014.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1750) PDF downloads(112) Cited by(4)

Article outline

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog