Research article Special Issues

Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function

  • Received: 10 February 2022 Revised: 30 April 2022 Accepted: 04 May 2022 Published: 06 May 2022
  • MSC : 65R20, 65L10

  • In this paper, reproducing kernel interpolation collocation method is explored for nonlinear fractional integral differential equations with Caputo variable order. In order to testify the feasibility of this method, several examples are studied from the different values of parameters. In addition, the influence of the parameters of the Jacobi polynomial on the numerical results is studied. Our results reveal that the present method is effective and provide highly precise numerical solutions for solving such fractional integral differential equations.

    Citation: Zhi-Yuan Li, Mei-Chun Wang, Yu-Lan Wang. Solving a class of variable order nonlinear fractional integral differential equations by using reproducing kernel function[J]. AIMS Mathematics, 2022, 7(7): 12935-12951. doi: 10.3934/math.2022716

    Related Papers:

  • In this paper, reproducing kernel interpolation collocation method is explored for nonlinear fractional integral differential equations with Caputo variable order. In order to testify the feasibility of this method, several examples are studied from the different values of parameters. In addition, the influence of the parameters of the Jacobi polynomial on the numerical results is studied. Our results reveal that the present method is effective and provide highly precise numerical solutions for solving such fractional integral differential equations.



    加载中


    [1] M. G. Sakar, O. Saldlr, F. Erdogan, An iterative approximation for time-fractional Cahn-Allen equation with reproducing kernel method, Comput. Appl. Math., 37 (2018), 5951–5964. https://doi.org/10.1007/s40314-018-0672-9 doi: 10.1007/s40314-018-0672-9
    [2] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fract., 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032 doi: 10.1016/j.chaos.2018.07.032
    [3] C. Han, Y. L. Wang, Z. Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759
    [4] C. Han, Y. L. Wang, Z. Y. Li, Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method, Fractals, 29 (2021), 2150246. https://doi.org/10.1142/S0218348X21502467 doi: 10.1142/S0218348X21502467
    [5] C. Han, Y. L. Wang, Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative, Fractal Fract., 6 (2022), 207. https://doi.org/10.3390/fractalfract6040207 doi: 10.3390/fractalfract6040207
    [6] Y. L. Wang, M. J. Du, F. G. Tan, Z. Y. Li, T. F. Nie, Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions, Appl. Math. Comput., 219 (2013), 5918–5925. https://doi.org/10.1016/j.amc.2012.12.009 doi: 10.1016/j.amc.2012.12.009
    [7] Y. L. Wang, L. N. Jia, H. L. Zhang, Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method, Int. J. Comput. Math., 96 (2019), 2100–2111. https://doi.org/10.1080/00207160.2018.1544367 doi: 10.1080/00207160.2018.1544367
    [8] X. Y. Li, B. Y. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387–393. https://doi.org/10.1016/j.cam.2016.08.010 doi: 10.1016/j.cam.2016.08.010
    [9] X. Y. Li, B. Y. Wu, A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions, Appl. Math. Lett., 86 (2018), 194–199. https://doi.org/10.1016/j.aml.2018.06.035 doi: 10.1016/j.aml.2018.06.035
    [10] X. Y. Li, H. L. Wang, B. Y. Wu, An accurate numerical technique for fractional oscillation equations with oscillatory solutions, Math. Methods Appl. Sci., 45 (2022), 956–966. https://doi.org/10.1002/mma.7825 doi: 10.1002/mma.7825
    [11] M. G. Sakar, O. Saldlr, A. Akgül, Numerical solution of fractional Bratu type equations with Legendre reproducing kernel method, arXiv, 2018. https://doi.org/10.48550/arXiv.1805.12080
    [12] M. G. Sakar, O. Saldlr, A new reproducing kernel approach for nonlinear fractional three-point boundary value problems, Fractal Fract., 4 (2020), 53. https://doi.org/10.3390/fractalfract4040053 doi: 10.3390/fractalfract4040053
    [13] A. Akgül, M. Inc, E. Karatas, D. Baleanu, Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique, Adv. Differ. Equ., 2015 (2015), 220. https://doi.org/10.1186/s13662-015-0558-8 doi: 10.1186/s13662-015-0558-8
    [14] A. Akgül, E. K. Akgül, A novel method for solutions of fourth-order fractional boundary value problems, Fractal Fract., 3 (2019), 33. https://doi.org/10.3390/fractalfract3020033 doi: 10.3390/fractalfract3020033
    [15] A. Akgül, M. Inc, E. Karatas, Reproducing kernel functions for difference equations, Discrete Cont. Dyn. Syst. Ser. S, 8 (2015), 1055–1064. http://dx.doi.org/10.3934/dcdss.2015.8.1055 doi: 10.3934/dcdss.2015.8.1055
    [16] A. Akgül, E. K. Akgül, S. Korhan, New reproducing kernel functions in the reproducing kernel Sobolev spaces, AIMS Math., 5 (2020), 482–497. https://doi.org/10.3934/math.2020032 doi: 10.3934/math.2020032
    [17] Y. L. Wang, J. Pang, Z. Y. Li, Efficient solution of a class of partial integro-differential equation in reproducing kernel space, Int. J. Comput. Math., 87 (2010), 3196–3198. https://doi.org/10.1080/00207160902890287 doi: 10.1080/00207160902890287
    [18] Z. Y. Li, Y. L. Wang, F. G. Tan, X. H. Wan, H. Yu, J. S. Duan, Solving a class of linear nonlocal boundary value problems using the reproducing kernel, Appl. Math. Comput., 265 (2015), 1098–1105. https://doi.org/10.1016/j.amc.2015.05.117 doi: 10.1016/j.amc.2015.05.117
    [19] X. Y. Li, B. Y. Wu, Error estimation for the reproducing kernel method to solve linear boundary value problems, J. Comput. Appl. Math., 243 (2013), 10–15. https://doi.org/10.1016/j.cam.2012.11.002 doi: 10.1016/j.cam.2012.11.002
    [20] Y. L. Wang, Z. Y. Li, Y. Cao, X. H. Wan, A new method for solving a class of mixed boundary value problems with singular coefficient, Appl. Math. Comput., 217 (2010), 2768–2772. https://doi.org/10.1016/j.amc.2010.08.011 doi: 10.1016/j.amc.2010.08.011
    [21] D. D. Dai, T. T. Ban, Y. L. Wang, W. Zhao, The piecewise reproducing kernel method for the time variable fractional order advection-reaction-diffusion equations, Therm. Sci., 25 (2021), 1261–1268. https://doi.org/10.2298/TSCI200302021D doi: 10.2298/TSCI200302021D
    [22] W. Jiang, Z. Chen, Solving a system of linear Volterra integral equations using the new reproducing kernel method, Appl. Math. Comput., 219 (2013), 10225–10230. https://doi.org/10.1016/j.amc.2013.03.123 doi: 10.1016/j.amc.2013.03.123
    [23] X. Y. Li, B. Y. Wu, A kernel regression approach for identification of first order differential equations based on functional data, Appl. Math. Lett., 127 (2022), 107832. https://doi.org/10.1016/j.aml.2021.107832 doi: 10.1016/j.aml.2021.107832
    [24] F. Z. Geng, X. Y. Wu, Reproducing kernel functions based univariate spline interpolation, Appl. Math. Lett., 122 (2021), 107525. https://doi.org/10.1016/j.aml.2021.107525 doi: 10.1016/j.aml.2021.107525
    [25] F. Z. Geng, X. Y. Wu, Reproducing kernel function-based Filon and Levin methods for solving highly oscillatory integral, Appl. Math. Comput., 397 (2021), 125980. https://doi.org/10.1016/j.amc.2021.125980 doi: 10.1016/j.amc.2021.125980
    [26] X. Y. Li, H. L. Wang, B. Y. Wu, A stable and efficient technique for linear boundary value problems by applying kernel functions, Appl. Numer. Math., 172 (2022), 206–214. https://doi.org/10.1016/j.apnum.2021.10.008 doi: 10.1016/j.apnum.2021.10.008
    [27] F. Z. Geng, Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems, AIMS Math., 5 (2020), 6020–6029. https://doi.org/10.3934/math.2020385 doi: 10.3934/math.2020385
    [28] F. Z. Geng, S. P. Qian, An optimal reproducing kernel method for linear nonlocal boundary value problems, Appl. Math. Lett., 77 (2018), 49–56. https://doi.org/10.1016/j.aml.2017.10.002 doi: 10.1016/j.aml.2017.10.002
    [29] W. Jiang, Z. Chen, Solving a system of linear Volterra integral equations using the reproducing kernel method, Appl. Math. Comput., 219 (2013), 10225–10230. https://doi.org/10.1016/j.amc.2013.03.123 doi: 10.1016/j.amc.2013.03.123
    [30] M. G. Sakar, Iterative reproducing kernel Hilbert spaces method for Riccati differential equations, J. Comput. Appl. Math., 309 (2017), 163–174. https://doi.org/10.1016/j.cam.2016.06.029 doi: 10.1016/j.cam.2016.06.029
    [31] M. G. Sakar, O. Saldlr, F. Erdogan, A hybrid method for singularly perturbed convection-diffusion equation, Int. J. Appl. Comput. Math., 5 (2019), 135. https://doi.org/10.1007/s40819-019-0714-z doi: 10.1007/s40819-019-0714-z
    [32] O. Saldlr, M. G. Sakar, F. Erdogan, Numerical solution of time-fractional Kawahara equation using reproducing kernel method with error estimate, Comp. Appl. Math., 38 (2019), 198. https://doi.org/10.1007/s40314-019-0979-1 doi: 10.1007/s40314-019-0979-1
    [33] Z. Y. Li, M. C. Wang, Y. L. Wang, J. Pang, Using reproducing kernel for solving a class of fractional order integral differential equations, Advan. Math. Phys., 2020 (2020), 8101843. https://doi.org/10.1155/2020/8101843 doi: 10.1155/2020/8101843
    [34] J. Q. Xie, M. X. Yi, Numerical research of nonlinear system of fractional Volterra-Fredholm integral-differential equations via Block-Pulse functions and error analysis, J. Comput. Appl. Math., 345 (2018), 159–167. https://doi.org/10.1016/j.cam.2018.06.008 doi: 10.1016/j.cam.2018.06.008
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2198) PDF downloads(84) Cited by(4)

Article outline

Figures and Tables

Figures(19)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog