Since the Marcus-Wyse ($ MW $-, for brevity) topological spaces play important roles in the fields of pure and applied topology (see Remark 2.2), the paper initially proves that the $ MW $-topological space satisfies the semi-$ T_3 $-separation axiom. To do this work more efficiently, we first propose several techniques discriminating between the semi-openness or the semi-closedness of a set in the $ MW $-topological space. Using this approach, we suggest the condition for simple $ MW $-paths to be semi-closed, which confirms that while every $ MW $-path $ P $ with $ \vert\, P\, \vert\geq 2 $ is semi-open, it may not be semi-closed. Besides, for each point $ p \in {\mathbb Z}^2 $ the smallest open neighborhood of the point $ p $ is proved to be a regular open set so that it is semi-closed. Note that the $ MW $-topological space is proved to satisfy the semi-$ T_3 $-separation axiom, i.e., it is proved to be a semi-$ T_3 $-space so that we can confirm that it also satisfies an $ s $-$ T_3 $-separation axiom. Finally, we prove that the semi-$ T_3 $-separation axiom is a semi-topological property.
Citation: Sang-Eon Han. Semi-topological properties of the Marcus-Wyse topological spaces[J]. AIMS Mathematics, 2022, 7(7): 12742-12759. doi: 10.3934/math.2022705
Since the Marcus-Wyse ($ MW $-, for brevity) topological spaces play important roles in the fields of pure and applied topology (see Remark 2.2), the paper initially proves that the $ MW $-topological space satisfies the semi-$ T_3 $-separation axiom. To do this work more efficiently, we first propose several techniques discriminating between the semi-openness or the semi-closedness of a set in the $ MW $-topological space. Using this approach, we suggest the condition for simple $ MW $-paths to be semi-closed, which confirms that while every $ MW $-path $ P $ with $ \vert\, P\, \vert\geq 2 $ is semi-open, it may not be semi-closed. Besides, for each point $ p \in {\mathbb Z}^2 $ the smallest open neighborhood of the point $ p $ is proved to be a regular open set so that it is semi-closed. Note that the $ MW $-topological space is proved to satisfy the semi-$ T_3 $-separation axiom, i.e., it is proved to be a semi-$ T_3 $-space so that we can confirm that it also satisfies an $ s $-$ T_3 $-separation axiom. Finally, we prove that the semi-$ T_3 $-separation axiom is a semi-topological property.
[1] | P. Alexandorff, Uber die Metrisation der im Kleinen kompakten topologischen Räume, Math. Ann., 92 (1924), 294–301. https://doi.org/10.1007/BF01448011 doi: 10.1007/BF01448011 |
[2] | P. Alexandorff, Diskrete räume, Mat. Sb., 2 (1937), 501–518. |
[3] | N. Biswas, On some mappings in topological spaces, Ph.D. Thesis, University of Calsutta, 1971. |
[4] | P. Bhattacharyya, B. K. Lahiri, Semi-generalized closed set in topology, Indian J. Math., 29 (1987), 375–382. |
[5] | V. A. Chatyrko, S. E. Han, Y. Hattori, Some remarks concerning semi-$T_{\frac{1}{2}}$- spaces, Filomat, 28 (2014), 21–25. https://doi.org/10.2298/FIL1401021C doi: 10.2298/FIL1401021C |
[6] | M. Caldas, A separation axiom between semi-$T_0$ and semi-$T_1$, Pro. Math., 11 (1977), 89–96. |
[7] | S. G. Crosseley, A note on semitopological properties, P. Am. Math. Soc., 72 (1978), 409–412. https://doi.org/10.1090/S0002-9939-1978-0507348-9 doi: 10.1090/S0002-9939-1978-0507348-9 |
[8] | S. G. Crosseley, S. K. Hildebrand, Semi-closure, Texas. J. Sci., 22 (1971), 99–112. |
[9] | S. G. Crosseley, S. K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233–254. https://doi.org/10.4064/fm-74-3-233-254 doi: 10.4064/fm-74-3-233-254 |
[10] | M. C. Cueva, R. K. Saraf, A research on characterizations of semi-$T_{\frac 1{2}}$ spaces, Divulg. Math., 8 (2000), 43–50. |
[11] | C. Dorsett, Semi-regular spaces, Soochow J. Math., 8 (1982), 45–53. |
[12] | C. Dorsett, Semi-separtaion axioms and hyperspaces, International J. Math. Sci., 4 (1981), 445–450. https://doi.org/10.1155/S0161171281000318 doi: 10.1155/S0161171281000318 |
[13] | W. Dunham, $T_{\frac{1}{2}}$-spaces, Kyungpook Math. J., 17 (1977), 161–169. |
[14] | T. Hamlett, A correction to the paper "Semi-open sets and semi-continuity in topological spaces" by Norman Levine, Proceeding of Amer. Math. Soc., 49 (1975), 458–460. https://doi.org/10.2307/2040665 doi: 10.2307/2040665 |
[15] | S. E. Han, Non-product property of the digital fundamental group, Inf. Sci., 171 (2005), 73–91. https://doi.org/10.1016/j.ins.2004.03.018 doi: 10.1016/j.ins.2004.03.018 |
[16] | S. E. Han, Continuities and homeomorphisms in computer topology and their applications, J. Korean Math. Soc., 45 (2008), 923–952. https://doi.org/10.4134/JKMS.2008.45.4.923 doi: 10.4134/JKMS.2008.45.4.923 |
[17] | S. E. Han, Study on topological spaces with the semi-$T_{\frac{1}{2}}$-separation axiom, Honam Math. J., 35 (2013), 717–726. https://doi.org/10.5831/HMJ.2013.35.4.707 doi: 10.5831/HMJ.2013.35.4.707 |
[18] | S. E. Han, Generalizations of continuity of maps and homeomorphisms for studying $2$D digital topological spaces and their applications, Topology Appl., 196 (2015), 468–482. https://doi.org/10.1016/j.topol.2015.05.024 doi: 10.1016/j.topol.2015.05.024 |
[19] | S. E. Han, Topological graphs based on a new topology on ${\mathbb Z}^n$ and its applications, Filomat, 31 (2017), 6313–6328. https://doi.org/10.2298/FIL1720313H doi: 10.2298/FIL1720313H |
[20] | S. E. Han, Hereditary properties of semi-separation axioms and their applications, Filomat, 32 (2018), 4689–4700. https://doi.org/10.2298/FIL1813689H doi: 10.2298/FIL1813689H |
[21] | S. E. Han, Roughness measures of locally finite covering rough sets, Int. J. Approx. Reason., 105 (2019), 368–385. https://doi.org/10.1016/j.ijar.2018.12.003 doi: 10.1016/j.ijar.2018.12.003 |
[22] | S. E. Han, Estimation of the complexity of a digital image form the viewpoint of fixed point theory, Appl. Math. Comput., 347 (2019, ) 236–248. https://doi.org/10.1016/j.amc.2018.10.067 doi: 10.1016/j.amc.2018.10.067 |
[23] | S. E. Han, Low-level separation axioms from the viewpoint of computational topology, Filomat, 33 (2019), 1889–1901. https://doi.org/10.2298/FIL1907889H doi: 10.2298/FIL1907889H |
[24] | S. E. Han, W. Yao, Homotopy based on Marcus-Wyse topology and its applications, Topology Appl., 201 (2016), 358–371. https://doi.org/10.1016/j.topol.2015.12.047 doi: 10.1016/j.topol.2015.12.047 |
[25] | G. T. Herman, Oriented surfaces in digital spaces, CVGIP Graph. Model. Image Proc., 55 (1993), 381–396. https://doi.org/10.1006/cgip.1993.1029 doi: 10.1006/cgip.1993.1029 |
[26] | D. Jankovic, I. Reilly, On semi-separation axioms, Indian J. Pure Appl. Math., 16 (1985), 957–964. |
[27] | J. M. Kang, S. E. Han, S. Lee, Digital products with $PN_k$-adjacencies and the almost fixed point property in $DTC_k^\blacktriangle$, AIMS Math., 6 (2021), 11550–11567. https://doi.org/10.3934/math.2021670 doi: 10.3934/math.2021670 |
[28] | T. Y. Kong, A. Rosenfeld, Topological algorithms for the digital image processing, Elsevier Science, Amsterdam, 1996. |
[29] | N. Levine, Semi-open sets and semi-continuity in topological spaces, Am. Math. Mon., 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039 doi: 10.1080/00029890.1963.11990039 |
[30] | N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palerm., 19 (1970), 89–96. https://doi.org/10.1007/BF02843888 doi: 10.1007/BF02843888 |
[31] | S. N. Maheshwari, R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89 (1975), 395–402. |
[32] | S. N. Maheshwari, R. Prasad, On $s$-regular spaces, Glas. Mat., 10 (1975), 347–350. |
[33] | J. R. Munkres, Topology a first course, Prentice-Hall, Inc., 1975. |
[34] | T. Neubrunn, On semi-homeomorphisms and related mappings, Acta Fac. Rerum Natur. Comen. Mat., 33 (1977), 133–137. |
[35] | T. Noiri, A note on semi-homeomorphism, Bull. Calcutta Math. Soc., 76 (1984), 1–3. |
[36] | T. Noiri, A note on $s$-regular space, Glas. Mat., 13 (1978), 107–110. |
[37] | J. P. Penot, M. Thera, Semi-continuous mappings in general topology, Arch. Math., 38 (1982), 158–166. https://doi.org/10.1007/BF01304771 doi: 10.1007/BF01304771 |
[38] | A. Rosenfeld, Digital topology, Am. Math. Mon., 86 (1979), 76–87. https://doi.org/10.1016/S0019-9958(79)90353-X doi: 10.1016/S0019-9958(79)90353-X |
[39] | J. Šlapal, Digital Jordan curves, Topology Appl., 153 (2006), 3255–3264. https://doi.org/10.1016/j.topol.2005.10.011 doi: 10.1016/j.topol.2005.10.011 |
[40] | M. Stone, Applications of the theory of Boolean rings to general topology, T. Am. Math. Soc., 41 (1937), 374–481. https://doi.org/10.1090/S0002-9947-1937-1501905-7 doi: 10.1090/S0002-9947-1937-1501905-7 |
[41] | F. Wyse, D. Marcus, Solution to problem 5712, Am. Math. Mon., 77 (1970), 1119. https://doi.org/10.2307/2316121 doi: 10.2307/2316121 |