Aiming at the initial value problems of variable coefficient nonlinear ordinary differential equations, this paper introduces the elastic transformation method into the process of solving the initial value problems of nonlinear ordinary differential equations with variable coefficients. A class of first-order and a class of third-order nonlinear ordinary differential equations with variable coefficients can be transformed into Chebyshev equations through elastic upgrading transformation and elastic reduction transformation respectively. According to the properties of Chebyshev polynomials and the initial conditions, the solutions to the initial value problems of the original first-order and third- order differential equations can be obtained through the elastic inverse transformation, and then the curves of the solutions can be drawn. The introduction of the elastic transformation method not only provides a new idea for solving the initial value problems of nonlinear differential equations, but also expands the solvable classes of ordinary differential equations.
Citation: Lin Fan, Shunchu Li, Dongfeng Shao, Xueqian Fu, Pan Liu, Qinmin Gui. Elastic transformation method for solving the initial value problem of variable coefficient nonlinear ordinary differential equations[J]. AIMS Mathematics, 2022, 7(7): 11972-11991. doi: 10.3934/math.2022667
Aiming at the initial value problems of variable coefficient nonlinear ordinary differential equations, this paper introduces the elastic transformation method into the process of solving the initial value problems of nonlinear ordinary differential equations with variable coefficients. A class of first-order and a class of third-order nonlinear ordinary differential equations with variable coefficients can be transformed into Chebyshev equations through elastic upgrading transformation and elastic reduction transformation respectively. According to the properties of Chebyshev polynomials and the initial conditions, the solutions to the initial value problems of the original first-order and third- order differential equations can be obtained through the elastic inverse transformation, and then the curves of the solutions can be drawn. The introduction of the elastic transformation method not only provides a new idea for solving the initial value problems of nonlinear differential equations, but also expands the solvable classes of ordinary differential equations.
[1] | S. C. Li, C. C. Zhao, P. S. Zheng, Q. M. Gui, Analysis of oil and gas flow characteristics in the reservoir with the elastic outer boundary, J. Petrol. Sci. Eng., 175 (2019), 280–285. http://doi.org/10.1016/j.petrol.2018.12.042 doi: 10.1016/j.petrol.2018.12.042 |
[2] | J. Yan, K. Folly, Investigation of the impact of demand elasticity on electricity market using extended Cournot approach, Int. J. Elec. Power, 60 (2014), 347–356. http://doi.org/10.1016/j.ijepes.2014.03.037 doi: 10.1016/j.ijepes.2014.03.037 |
[3] | J. P. Zhang, The general concept of elasticity coefficient, (Chinese), Tech. Econ., 1995. |
[4] | A. Marshall, The Principles of economics, 8 Eds., London: Palgrave Macmillan UK, 2013. |
[5] | J. H. Woods, H. M. Sauro, Elasticities in metabolic control analysis: Algebraic derivation of simplified expressions, Bioinformatics, 13 (1997), 123–130. http://doi.org/10.1093/bioinformatics/13.2.123 doi: 10.1093/bioinformatics/13.2.123 |
[6] | Y. Chen, Q. Zhang, Y. F. Zhang, B. Z. Xia, X. N. Liu, X. M. Zhou, et al., Research progress of elastic topological materials, Adv. Mech., 51 (2021), 189–256. http://doi.org/10.6052/1000-0992-21-015 doi: 10.6052/1000-0992-21-015 |
[7] | T. R. Zhang, R. Y. Mo, J. Hu, S. Chen, C. H. Wang, J. Z. Guo, Interaction between bubble and particle in spherical liquid cavity surround by an elastic medium, Acta Phys. Sin., 69 (2020), 234301. http://doi.org/10.7498/aps.69.20200764 doi: 10.7498/aps.69.20200764 |
[8] | M. A. Gomez, Equilibrium dynamics in the neoclassical growth model with habit formation and elastic labor supply, Macroecon. Dyn., 19 (2015), 618–642. http://doi.org/10.1017/S1365100513000503 doi: 10.1017/S1365100513000503 |
[9] | M. A. Gomez, Factor substitution and convergence speed in the neoclassical model with elastic labor supply, Econ. Lett., 172 (2018), 89–92. http://doi.org/10.1016/j.econlet.2018.08.040 doi: 10.1016/j.econlet.2018.08.040 |
[10] | Y. M. Hu, Y. H. Li, Geometric interpretation of economic elastic function, Coll. Math., 19 (2003), 6–9. http://doi.org/10.3969/j.issn.1672-1454.2003.04.003 doi: 10.3969/j.issn.1672-1454.2003.04.003 |
[11] | J. Wang, Y. Q. Zhang, Elasticity analysis of chinese economic growth quality in the view of "five development concepts", Soft Sci., 32 (2018), 26–29. http://doi.org/10.13956/j.ss.1001-8409.2018.06.06 doi: 10.13956/j.ss.1001-8409.2018.06.06 |
[12] | X. Wu, Stress analysis of round hole for a thin plate with different elastic moduli in tension and compression, Chinese Q. Mech., 37 (2016), 581–589. http://doi.org/10.15959/j.cnki.0254-0053.2016.03.019 doi: 10.15959/j.cnki.0254-0053.2016.03.019 |
[13] | X. Wu, L. J. Yang, The elastic theory solution for curved beam with difference elastic modulus in tension and compression, Eng. Mech., 30 (2013), 76–80. |
[14] | Z. L. Xu, A concise course in elasticity, (Chinese), Beijing: Higher Education Press, 2013. |
[15] | G. X. Wang, Z. M. Zhou, M. S. Zhu, S. S. Wang, Ordinary differential euations and boundary value problems, (Chinese), Beijing: Science Press, 2008. |
[16] | S. L. Zhou, Partial differential equations, (Chinese), Beijing: Peking University Press, 2005. |
[17] | S. F. Shen, Z. L. Pan, J. Zhang, Variable separation approach to solve nonlinear systems, Commun. Theor. Phys., 42 (2004), 565. |
[18] | N. Kang, J. F. Zhao, H. R. Lian, Solving inhomogeneous linear partial differential equations with constant variation method, (Chinese), Know. Library, 2018,237–238. |
[19] | G. J. Ren, The application of variation of constants in differential and difference equations, (Chinese), J. Shandong Normal Univ. (Nat. Sci.), 35 (2020), 431–435. http://doi.org/10.3969/j.issn.1001-4748.2020.04.006 doi: 10.3969/j.issn.1001-4748.2020.04.006 |
[20] | Y. T. Zhang, The method of variation of constants for second-order inhomogeneous linear differential equations, (Chinese), Stud. College Math., 1999, 20–22. |
[21] | Y. H. Qi, C. R. Pugua, Application of integrating factor method in solving ordinary differential equations, (Chinese), Math. Learn. Res., 2017, 5–6. |
[22] | G. Bengochea, L. Verde-Star, Operational method for the solution of ordinary differential equations using hermite series, Math. Commun., 23 (2018), 279–293. |
[23] | S. K. Meng, Riccati differential equation and its power series solution, (Chinese), J. Guangxi Univ. Nat. (Nat. Sci. Edition), 6 (2000), 241–244. http://doi.org/10.3969/j.issn.1673-8462.2000.04.001 doi: 10.3969/j.issn.1673-8462.2000.04.001 |
[24] | R. F. Ren, On the origin of the method of series for ordinary differential equation solution, (Chinese), Math. Pract. Theory, 39 (2009), 60–65. |
[25] | H. Fatoorechi, H. Abolghasemi, Improving the differential transform method: A novel technique to obtain the differential transforms of nonlinearities by the adomian polynomials, Appl. Math. Model., 37 (2013), 6008–6017. https://doi.org/10.1016/j.apm.2012.12.007 doi: 10.1016/j.apm.2012.12.007 |
[26] | H. Fatoorechi, H. Abolghasemi, Series solution of nonlinear differential equations by a novel extension of the laplace transform method, Int. J. Comput. Math., 93 (2015), 1299–1319. https://doi.org/10.1080/00207160.2015.1045421 doi: 10.1080/00207160.2015.1045421 |
[27] | S. A. El-Wakil, M. A. Abdou, A. Elhanbaly, Adomian decomposition method for solving the diffusion–convection–reaction equations, Appl. Math. Comput., 177 (2006), 729–736. https://doi.org/10.1016/j.amc.2005.09.105 doi: 10.1016/j.amc.2005.09.105 |
[28] | H. Fatoorehchi, M. Alidadi, R. Rach, A. Shojaeian, Theoretical and experimental investigation of thermal dynamics of steinhart-hart negative temperature coefficient thermistors, J. Heat Transfer., 141 (2019), 072003. https://doi.org/10.1115/1.4043676 doi: 10.1115/1.4043676 |
[29] | Y. M. R, M. S. M. Noorani, I. Hashim, Variational iteration method for fractional heat- and wave-like equations, Nonlinear Anal.-Real World Appl., 10 (2009), 1854–1869. https://doi.org/10.1016/j.nonrwa.2008.02.026 doi: 10.1016/j.nonrwa.2008.02.026 |
[30] | T. Oezis, D. Agirseven, He's homotopy perturbation method for solving heat-like and wave-like equations with variable coefficients, Phys. Lett. A., 372 (2008), 5944–5950. https://doi.org/10.1016/j.physleta.2008.07.060 doi: 10.1016/j.physleta.2008.07.060 |
[31] | P. Das, S. Natesan, Higher-order parameter uniform convergent schemes for robin type reaction-diffusion problems using adaptively generated grid, Int. J. Comput. Methods., 9 (2012), 1250052. https://doi.org/10.1142/S0219876212500521 doi: 10.1142/S0219876212500521 |
[32] | M. Chandru, T. Prabha, P. Das, V. Shanthi, A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms, Differ. Equ. Dyn. Syst., 27 (2019), 91–112. https://doi.org/10.1007/s12591-017-0385-3 doi: 10.1007/s12591-017-0385-3 |
[33] | P. Das, S. Rana, H. Ramos, A perturbation-based approach for solving fractional-order volterra–fredholm integro differential equations and its convergence analysis, Int. J. Comput. Math., 97 (2020), 1994–2014. https://doi.org/10.1080/00207160.2019.1673892 doi: 10.1080/00207160.2019.1673892 |
[34] | P. Das, S. Rana, H. Ramos, Homotopy perturbation method for solving caputo-type fractional-order volterra-fredholm integro-differential equations, Comput. Math. Method., 1 (2019), e1047. https://doi.org/10.1002/cmm4.1047 doi: 10.1002/cmm4.1047 |
[35] | E. Kamke, Handbook of ordinary differential equations, Beijing: Science Press, 1980. |
[36] | H. L. Zhang, The similar structure of solution of homogeneous spherical flow reservoir problem under elastic outer boundary, (Chinese), Master degree, Xihua University, 2020. |
[37] | S. C. Li, H. Guo, P. S. Zheng, X. X. Dong, C. C. Zhao, Q. M. Gui, The elastic boundary value problem of extended modified bessel equation and its application in fractal homogeneous reservoir, Comput. Appl. Math., 39 (2020), 63. http://doi.org/10.1007/s40314-020-1104-1 doi: 10.1007/s40314-020-1104-1 |
[38] | C. C. Zhao, Elasticity of the outer boundary and the similar structure of the pressure distribution in the oil and gas reservoir, (Chinese), Master degree, Xihua University, 2019. |
[39] | P. S. Zheng, J. Luo, S. C. Li, X. X. Dong, Elastic transformation method for solving ordinary differential equations with variable coefficients, AIMS Mathematics, 7 (2021), 1307–1320. http://doi.org/10.3934/math.2022077 doi: 10.3934/math.2022077 |
[40] | S. S. Liu, S. D. Liu, Special functions, 2 Eds., (Chinese), Beijing: Meteorological Press, 2002. |
[41] | T. J. Rivlin, The Chebyshev polynomials, Newyork: Wiley, 1974. |
[42] | Q. Y. Li, N. C. Wang, D. Y. Yi, Numerical analysis, 5 Eds., (Chinese), Beijing: Tsinghua University Press, 2008. |
[43] | R. M. Hafez, Y. H. Youssri, Spectral Legendre-Chebyshev treatment of 2d linear and nonlinear mixed volterra-fredholm integral equation, Math. Sci. Lett., 9 (2020), 37–47. http://doi.org/10.18576/msl/090204 doi: 10.18576/msl/090204 |
[44] | Y. H. Youssri, R. M. Hafez, Chebyshev collocation treatment of volterra–fredholm integral equation with error analysis, Arab. J. Math., 9 (2020), 471–480. https://doi.org/10.1007/s40065-019-0243-y doi: 10.1007/s40065-019-0243-y |
[45] | Y. B. Tang, S. C. Li, J. Yan, Q. Y. Li, The similar structure of solutions for the boundary value problems of tschebyscheff equation, J. Ordnance Equip. Eng., 32 (2011), 155–156. http://doi.org/10.3969/j.issn.1006-0707.2011.01.050 doi: 10.3969/j.issn.1006-0707.2011.01.050 |