An upper bound of the infinity norm for the inverse of $ SD{D_1} $ matrix is presented. We apply the new bound to linear complementarity problems (LCPs) and obtain an alternative error bound for LCPs of $ SD{D_1} $ matrices and $ SD{{D}_{1}} $-$ B $ matrices. In addition, a new lower bound for the smallest singular value is also given. Numerical examples show the validity of the results.
Citation: Yingxia Zhao, Lanlan Liu, Feng Wang. Error bounds for linear complementarity problems of $ SD{{D}_{1}} $ matrices and $ SD{{D}_{1}} $-$ B $ matrices[J]. AIMS Mathematics, 2022, 7(7): 11862-11878. doi: 10.3934/math.2022662
An upper bound of the infinity norm for the inverse of $ SD{D_1} $ matrix is presented. We apply the new bound to linear complementarity problems (LCPs) and obtain an alternative error bound for LCPs of $ SD{D_1} $ matrices and $ SD{{D}_{1}} $-$ B $ matrices. In addition, a new lower bound for the smallest singular value is also given. Numerical examples show the validity of the results.
[1] | A. Berman, R. J. Plemmons, Nonnegative matrix in the mathematical sciences, Society for Industrial and Applied Mathematics, 1994. |
[2] | R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, SIAM, 1992. |
[3] | K. G. Murty, F. T. Yu, Linear Complementarity, Linear and nonlinear Programming, Berlin: Heldermann Verlag, 1998. |
[4] | X. J. Chen, S. H. Xiang, Computation of error bounds for $P$-matrix linear complementarity problem, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9 |
[5] | J. C. Li, G. Li, Error bounds for linear complementarity problems of $S$-$QN$ matrices, Numer. Algor., 83 (2020), 935–955. https://doi.org/10.1007/s11075-019-00710-0 doi: 10.1007/s11075-019-00710-0 |
[6] | L. Cvetkovi$\acute{c}$, V. Kosti$\acute{c}$, S. Rau$\check{s}$ki, A new subclass of $H$-matrices, Appl. Math. Comput., 208 (2009), 20–210. https://doi.org/10.1016/j.amc.2008.11.037 doi: 10.1016/j.amc.2008.11.037 |
[7] | L. Y. Kolotilina, Some bounds for inverses involving matrix sparsity pattern, J. Math. Sci., 249 (2020), 242–255. https://doi.org/10.1007/s10958-020-04938-3 doi: 10.1007/s10958-020-04938-3 |
[8] | J. X. Zhao, Q. L. Liu, C. Q. Li, Y. T. Li, Dashnic-Zusmanovich type matrices: A new subclass of nonsingular $H$-matrices, Linear Algebra Appl., 552 (2018), 277–287. https://doi.org/10.1016/j.laa.2018.04.028 doi: 10.1016/j.laa.2018.04.028 |
[9] | L. Gao, Y. Q. Wang, C. Q. Li, Y. T. Li, Error bounds for linear complementarity problems of $S$-Nekrasov matrices and $B$-$S$-Nekrasov matrices, J. Comput. Appl. Math., 336 (2018), 147–159. https://doi.org/10.1016/j.cam.2017.12.032 doi: 10.1016/j.cam.2017.12.032 |
[10] | P. F. Dai, J. C. Li, J. C. Bai, L. Q. Dong, New error bounds for linear complementarity problems of $S$-Nekrasovmatrices and $B$-$S$-Nekrasovmatrices, Comput. Appl. Math., 38 (2019), 61. https://doi.org/10.1007/s40314-019-0818-4 doi: 10.1007/s40314-019-0818-4 |
[11] | M. García-Esnaola, J. M. Pe$\tilde{n}$a, $B^{R}_{\pi}$-matrices and error bounds for linear complementarity problems, Calcolo, 54 (2017), 813–822. https://doi.org/10.1007/s10092-016-0209-9 doi: 10.1007/s10092-016-0209-9 |
[12] | C. Q. Li, P. F. Dai, Y. T. Li, New error bounds for linear complementarity problems of Nekrasov matrices and $B$-Nekrasov matrices, Numer. Algor., 74 (2017), 997–1009. https://doi.org/10.1007/s11075-016-0181-0 doi: 10.1007/s11075-016-0181-0 |
[13] | M. García-Esnaola, J. M. Pe$\tilde{n}$a, $B$-Nekrasov matrices and error bounds for linear complementarity problems, Numer Algor., 72 (2016), 435–445. https://doi.org/10.1007/s11075-015-0054-y doi: 10.1007/s11075-015-0054-y |
[14] | R. J. Zhao, B. Zheng, M. L. Liang, A new error bound for linear complementarity problems with weakly chained diagonally dominant $B$-matrices, Appl. Math. Comput., 367 (2020), 124788. https://doi.org/10.1016/j.amc.2019.124788 doi: 10.1016/j.amc.2019.124788 |
[15] | X. Song, L. Gao, $CKV$-type $B$-matrices and error bounds for linear complementarity problems. AIMS Math., 6 (2020), 10846–10860. https://doi.org/10.3934/math.2021630 doi: 10.3934/math.2021630 |
[16] | P. F. Dai, Error bounds for linear complementarity problems of $DB$-matrices, Linear Algebra Appl., 434 (2011), 830–840. https://doi.org/10.1016/j.laa.2010.09.049 doi: 10.1016/j.laa.2010.09.049 |
[17] | T. T. Chen, W. Li, X. P. Wu, S. Vong, Error bounds for linear complementarity problems of $MB$-matrices, Numer. Algor., 70 (2015), 341–356. https://doi.org/10.1007/s11075-014-9950-9 doi: 10.1007/s11075-014-9950-9 |
[18] | C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problems for $B$-matrices, Appl. Math. Lett., 57 (2016), 108–113. https://doi.org/10.1016/j.aml.2016.01.013 doi: 10.1016/j.aml.2016.01.013 |
[19] | D. S. Sun, F. Wang, New error bounds for linear complementarity problem of weakly chained diagonally dominant $B$-matrices, Open Math., 15 (2017), 978–986. https://doi.org/10.1515/math-2017-0080 doi: 10.1515/math-2017-0080 |
[20] | R. Bru, F. Pedroche, D. B. Szyld, Subdirect sums of $S$-strictly diagonally dominant matrices, Electron. J. Linear Al., 15 (2006), 201–209. https://doi.org/10.13001/1081-3810.1230 doi: 10.13001/1081-3810.1230 |
[21] | A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, 1979. |
[22] | J. M. Pe$\tilde{n}$a, Diagonal dominance, Schur complements and some classes of $H$-matrices and $P$-matrices, Adv. Comput. Math., 35 (2011), 357–373. https://doi.org/10.1007/s10444-010-9160-5 doi: 10.1007/s10444-010-9160-5 |
[23] | L. Gao, An alternative error bound for linear complementarily problems involving ${B^S}$-matrices, J. Inequal. Appl., 2018 (2018), 28. https://doi.org/10.1186/s13660-018-1618-x doi: 10.1186/s13660-018-1618-x |
[24] | P. Wang, An upper bound for ${\left\| {{A^{ - 1}}} \right\|_\infty }$ of strictly diagonally dominant $M$-matrices, Linear Algebra Appl., 431 (2009), 511–517. https://doi.org/10.1016/j.laa.2009.02.037 doi: 10.1016/j.laa.2009.02.037 |
[25] | L. Zou, A lower bound for the smallest singular value, J. Math. Inequal., 6 (2012), 625–629. https://doi.org/10.7153/jmi-06-60 doi: 10.7153/jmi-06-60 |
[26] | R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge: Cambridge University Press, 1985. |
[27] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge: Cambridge University Press, 1991. |
[28] | J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5. https://doi.org/10.1016/0024-3795(75)90112-3 doi: 10.1016/0024-3795(75)90112-3 |