Research article

Generalized contraction theorems approach to fuzzy differential equations in fuzzy metric spaces

  • Received: 12 January 2022 Revised: 23 March 2022 Accepted: 28 March 2022 Published: 11 April 2022
  • MSC : 47H10, 54H25

  • Fixed point theory is one of the most interesting areas of research in mathematics. In this direction, we study some unique common fixed point results for a pair of self-mappings without continuity on fuzzy metric spaces under the generalized contraction conditions by using "the triangular property of fuzzy metric". Moreover, we present weak-contraction and generalized Ćirić-contraction theorems. The results are supported by suitable examples. Further, we establish a supportable application of the fuzzy differential equations to ensure the existence of a unique common solution to validate our main work.

    Citation: Iqra Shamas, Saif Ur Rehman, Thabet Abdeljawad, Mariyam Sattar, Sami Ullah Khan, Nabil Mlaiki. Generalized contraction theorems approach to fuzzy differential equations in fuzzy metric spaces[J]. AIMS Mathematics, 2022, 7(6): 11243-11275. doi: 10.3934/math.2022628

    Related Papers:

  • Fixed point theory is one of the most interesting areas of research in mathematics. In this direction, we study some unique common fixed point results for a pair of self-mappings without continuity on fuzzy metric spaces under the generalized contraction conditions by using "the triangular property of fuzzy metric". Moreover, we present weak-contraction and generalized Ćirić-contraction theorems. The results are supported by suitable examples. Further, we establish a supportable application of the fuzzy differential equations to ensure the existence of a unique common solution to validate our main work.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [3] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [4] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [5] F. Kiany, A. Amini-Haradi, Fixed point and endpoint theorems for set-valued fuzzy contraction maps in fuzzy metric spaces, Fixed Point Theory Appl., 2011 (2011), 94. https://doi.org/10.1186/1687-1812-2011-94 doi: 10.1186/1687-1812-2011-94
    [6] J. P. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Amer. Math. Soc., 78 (1980), 391–398. https://doi.org/10.1090/S0002-9939-1980-0553382-1 doi: 10.1090/S0002-9939-1980-0553382-1
    [7] M. Fakhar, Endpoints of set-valued asymptotic contractions in metric spaces, Appl. Math. Lett., 24 (2010), 428–431. https://doi.org/10.1016/j.aml.2010.10.028 doi: 10.1016/j.aml.2010.10.028
    [8] V. Gregori, A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Set. Syst., 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9
    [9] A. A. Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Anal. Theor., 72 (2010), 132–134. https://doi.org/10.1016/j.na.2009.06.074 doi: 10.1016/j.na.2009.06.074
    [10] N. Hussain, A. A. Harandi, Y. J. Cho, Approximate endpoints for set-valued contractions in metric spaces, Fixed Point Theory Appl., 2010 (2010), 614867. https://doi.org/10.1155/2010/614867 doi: 10.1155/2010/614867
    [11] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188. https://doi.org/10.1016/0022-247X(89)90214-X doi: 10.1016/0022-247X(89)90214-X
    [12] S. U. Rehman, H. Aydi, G.-X. Chen, S. Jabeen, S. U. Khan, Some set-valued and multi-valued contraction results in fuzzy cone metric spaces, J. Inequal. Appl., 2021 (2021), 110. https://doi.org/10.1186/s13660-021-02646-3 doi: 10.1186/s13660-021-02646-3
    [13] K. Wlodarczyk, D. Klim, R. Plebaniak, Existence and uniqueness of endpoints of closed set-valued asymptotic contractions in metric spaces, J. Math. Anal. Appl., 328 (2007), 46–57. https://doi.org/10.1016/j.jmaa.2006.05.029 doi: 10.1016/j.jmaa.2006.05.029
    [14] C. D. Bari, C. Vetro, A fixed point theorem for a family of mappings in fuzzy metric space, Rend. Circ. Mat. Palermo, 52 (2003), 315–321. https://doi.org/10.1007/bf02872238 doi: 10.1007/bf02872238
    [15] I. Beg, M. Abbas, Invariant approximation for fuzzy nonexpansive mappings, Math. Bohem., 136 (2011), 51–59. https://doi.org/10.21136/MB.2011.141449 doi: 10.21136/MB.2011.141449
    [16] I. Beg, S. Sedghi, N. Shobe, Fixed point theorems in fuzzy metric spaces, Int. J. Anal., 2013 (2013), 934145. https://doi.org/10.1155/2013/934145 doi: 10.1155/2013/934145
    [17] C. D. Bari, C. Vetro, Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space, J. Fuzzy Math., 1 (2005), 973–982.
    [18] M. Imdad, J. Ali, Some common fixed point theorems in fuzzy metric spaces, Math. Commun., 11 (2006), 153–163.
    [19] A. F. R. L-de Hierro, A. F. Fulga, A. Karapinar, N. Shahzad, Proinov-type fixed-point results in non-archimedean fuzzy metric spaces, Mathematics, 9 (2021), 1594. https://doi.org/10.3390/math9141594 doi: 10.3390/math9141594
    [20] M. Jleli, E. Karapinar, B. Samet, On cyclic $(\psi, \phi)-$contractions in Kaleva-Seikkala's type fuzzy metric spaces, J. Intell. Fuzzy Syst., 27 (2014), 2045–2053. https://doi.org/10.3233/IFS-141170 doi: 10.3233/IFS-141170
    [21] X. Li, S. U. Rehman, S. U. Khan, H. Aydi, J. Ahmad, N. Hussain, Strong coupled fixed point results and applications to Urysohn integral equations, Dynam. Syst. Appl., 30 (2021), 197–218. https://doi.org/10.46719/dsa20213023 doi: 10.46719/dsa20213023
    [22] B. D. Pant, S. Chauhan, Common fixed point theorems for two pairs of weakly compatible mappings in menger spaces and fuzzy metric spaces, Sci. Stud. Res., 21 (2011), 81–96.
    [23] J. Rodriguez-Lopez, S. Romaguera, The Haudorff fuzzy metric on compact sets, Fuzzy Set. Syst., 147 (2008), 273–283. https://doi.org/10.1016/j.fss.2003.09.007 doi: 10.1016/j.fss.2003.09.007
    [24] S. U. Rehman, I. Shamas, N. Jan, A. Gumaei, M. Al-Rakhami, Some coincidence and common fixed point results in fuzzy metric space with an application to differential equations, J. Funct. Space., 2021 (2021), 9411993. https://doi.org/10.1155/2021/9411993 doi: 10.1155/2021/9411993
    [25] S. Chauhan, M. A. Khan, S. Kumar, Unified fixed point theorems in fuzzy metric spaces via common limit range property, J. Inequal. Appl., 2013 (2013), 182. https://doi.org/10.1186/1029-242X-2013-182 doi: 10.1186/1029-242X-2013-182
    [26] A.-F. Roldán-López-de-Hierro, E. Karapinar, S. Manro, Some new fixed point theorems in fuzzy metric spaces, J. Intell. Fuzzy Syst., 27 (2014), 2257–2264. https://doi.org/10.3233/IFS-141189 doi: 10.3233/IFS-141189
    [27] Z. Sadeghi, S. M. Vaezpour, C. Park, R. Saadati, C. Vetro, Set-valued mappings in partially ordered fuzzy metric spaces, J. Inequal. Appl., 2014 (2014), 157. https://doi.org/10.1186/1029-242X-2014-157 doi: 10.1186/1029-242X-2014-157
    [28] I. Shamas, S. U. Rehman, H. Aydi, T. Mahmood, E. Ameer, Unique fixed-point results in fuzzy metric spaces with an application to Fredholm integral equations, J. Funct. Space., 2021 (2021), 4429173. https://doi.org/10.1155/2021/4429173 doi: 10.1155/2021/4429173
    [29] I. Shamas, S. U. Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, A new approach to fuzzy differential equations using weakly-compatible self-mappings in fuzzy metric spaces, J. Funct. Space., 2021 (2021), 6123154. https://doi.org/10.1155/2021/6123154 doi: 10.1155/2021/6123154
    [30] T. Som, Some results on common fixed point in fuzzy metric spaces, Soochow Journal of Mathematics, 33 (2007), 553–561.
    [31] S. U. Rehman, R. Chinram, C. Boonpok, Rational type fuzzy-contraction results in fuzzy metric spaces with an application, J. Math., 2021 (2021), 6644491. https://doi.org/10.1155/2021/6644491 doi: 10.1155/2021/6644491
    [32] B. Schweizer, A. Sklar, Statical metric spaces, Pac. J. Math., 10 (1960), 313–334. https://doi.org/10.2140/pjm.1960.10.313 doi: 10.2140/pjm.1960.10.313
    [33] A. R. Alharbi, M. B. Almatrafi, A. R. Seadawy, Construction of the numerical and analytical wave solutions of the Joseph-Egri dynamical equation for the long waves in nonlinear dispersive systems, Int. J. Mod. Phys. B, 34 (2020), 2050289. https://doi.org/10.1142/S0217979220502896 doi: 10.1142/S0217979220502896
    [34] J. Chesters, R. Mottonen, K. E. Watkins, Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter, Brain, 141 (2018), 1161–1171. https://doi.org/10.1093/brain/awy011 doi: 10.1093/brain/awy011
    [35] Y. S. Ozkan, A. R. Seadawy, E. Yasar, Multi-wave, breather and interaction solutions to $(3+1)$ dimensional Vakhnenko-Parkes equation arising at propagation of high-frequency waves in a relaxing medium, J. Taibah Univ. Sci., 15 (2021), 666–678. https://doi.org/10.1080/16583655.2021.1999053 doi: 10.1080/16583655.2021.1999053
    [36] A. R. Seadawy, K. K. Ali, R. Nuruddeen, A variety of soliton solutions for the fractional Wazwaz-Benjamin-Bona-Mahony equations, Results Phys., 12 (2019), 2234–2241. https://doi.org/10.1016/j.rinp.2019.02.064 doi: 10.1016/j.rinp.2019.02.064
    [37] U. Younas, A. R. Seadawy, M. Younis, S. T. R. Rizvi, Dispersive of propagation wave structures to the Dullin-Gottwald-Holm dynamical equation in a shallow water waves, Chinese J. Phys., 68 (2020), 348–364. https://doi.org/10.1016/j.cjph.2020.09.021 doi: 10.1016/j.cjph.2020.09.021
    [38] V. Lakshmikantham, R. Mohapatra, Theory of fuzzy differential equations and inclusion, London: CRC Press, 2003. https://doi.org/10.1201/9780203011386
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1503) PDF downloads(58) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog