In this paper, we deal with the reconstruction problem of aperture in the plane from their diffraction patterns. The problem is severely ill-posed. The reconstruction solutions of classical Tikhonov method and Fourier truncated method are usually over-smoothing. To overcome this disadvantage of the classical methods, we introduce a quasi-boundary regularization method for stabilizing the problem by adding a-priori assumption on the exact solution. The corresponding error estimate is derived. At the continuation boundary $ z = 0 $, the error estimate under the a-priori assumption is also proved. In theory without noise, the proposed method has better approximation than the classical Tikhonov method. For illustration, two numerical examples are constructed to demonstrate the feasibility and efficiency of the proposed method.
Citation: Zhenping Li, Xiangtuan Xiong, Jun Li, Jiaqi Hou. A quasi-boundary method for solving an inverse diffraction problem[J]. AIMS Mathematics, 2022, 7(6): 11070-11086. doi: 10.3934/math.2022618
In this paper, we deal with the reconstruction problem of aperture in the plane from their diffraction patterns. The problem is severely ill-posed. The reconstruction solutions of classical Tikhonov method and Fourier truncated method are usually over-smoothing. To overcome this disadvantage of the classical methods, we introduce a quasi-boundary regularization method for stabilizing the problem by adding a-priori assumption on the exact solution. The corresponding error estimate is derived. At the continuation boundary $ z = 0 $, the error estimate under the a-priori assumption is also proved. In theory without noise, the proposed method has better approximation than the classical Tikhonov method. For illustration, two numerical examples are constructed to demonstrate the feasibility and efficiency of the proposed method.
[1] | M. Bertero, P. Boccacci, M. Piana, Resolution and super-resolution in inverse diffraction, In: Inverse problems of wave propagation and diffraction, Lecture notes in physics, Vol. 486, Berlin, Heidelberg: Springer, 1997. https://doi.org/10.1007/BFb0105756 |
[2] | P. S. Carney, J. C. Schotland, Inverse scattering for near-field microscopy, Appl. Phys. Lett., 77 (2000), 2798-2800. https://doi.org/10.1063/1.1320844 doi: 10.1063/1.1320844 |
[3] | G. Bao, P. J. Li, H. J. Wu, A computational inverse diffraction grating problem, J. Opt. Soc. Amer. A, 29 (2012), 394-399. https://doi.org/10.1364/JOSAA.29.000394 doi: 10.1364/JOSAA.29.000394 |
[4] | G. Bao, P. J. Li, Near-field imaging of infinite rough surfaces, SIAM J. Appl. Math., 73 (2013), 2162-2187. https://doi.org/10.1137/130916266 doi: 10.1137/130916266 |
[5] | G. Bao, P. J. Li, Convergence analysis in near-field imaging, Inverse Probl., 30 (2014), 1-26. https://doi.org/10.1088/0266-5611/30/8/085008 doi: 10.1088/0266-5611/30/8/085008 |
[6] | G. Bao, P. J. Li, Y. L. Wang, Near-field imaging with far-field data, Appl. Math. Lett., 60 (2016), 36-42. https://doi.org/10.1016/j.aml.2016.03.023 doi: 10.1016/j.aml.2016.03.023 |
[7] | P. J. Li, Y. L. Wang, Y. Zhao, Near-field imaging of biperiodic surfaces for elastic waves, J. Comput. Phys., 324 (2016), 1-23. https://doi.org/10.1016/j.jcp.2016.07.030 doi: 10.1016/j.jcp.2016.07.030 |
[8] | W. S. Yin, W. H. Yang, H. Y. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 109594. https://doi.org/10.1016/j.jcp.2020.109594 doi: 10.1016/j.jcp.2020.109594 |
[9] | Y. Gao, H. Y. Liu, X. C. Wang, K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2022), 110771. https://doi.org/10.1016/j.jcp.2021.110771 doi: 10.1016/j.jcp.2021.110771 |
[10] | R. Magnanini, G. Papi, An inverse problem for the Helmholtz equation, Inverse Probl., 1 (1985), 357-370. https://doi.org/10.1088/0266-5611/1/4/007 doi: 10.1088/0266-5611/1/4/007 |
[11] | H. H. Qin, T. Wei, R. Shi, Modified Tikhonov regularization method for the Cauchy problem of the Helmholtz equation, J. Comput. Appl. Math., 224 (2009), 39-53. https://doi.org/10.1016/j.cam.2008.04.012 doi: 10.1016/j.cam.2008.04.012 |
[12] | X. T. Xiong, C. L. Fu, Two approximate methods of a Cauchy problem for the Helmholtz equation, Comput. Appl. Math., 26 (2007), 285-307. https://doi.org/10.1590/S0101-82052007000200006 doi: 10.1590/S0101-82052007000200006 |
[13] | X. L. Feng, C. L. Fu, H. Cheng, A regularization method for solving the Cauchy problem for the Helmholtz equation, Appl. Math. Model., 35 (2011), 3301-3315. https://doi.org/10.1016/j.apm.2011.01.021 doi: 10.1016/j.apm.2011.01.021 |
[14] | H. H. Qin, T. Wei, Two regularization methods for the Cauchy problems of the Helmholtz equation, Appl. Math. Model., 34 (2010), 947-967. https://doi.org/10.1016/j.apm.2009.07.008 doi: 10.1016/j.apm.2009.07.008 |
[15] | Y. X. Zhang, C. L. Fu, Z. L. Deng, An a posteriori truncation method for some Cauchy problems associated with Helmholtz-type equations, Inverse Probl. Sci. En., 21 (2013), 1151-1168. https://doi.org/10.1080/17415977.2012.743538 doi: 10.1080/17415977.2012.743538 |
[16] | X. T. Xiong, A regularization method for a Cauchy problem of the Helmholtz equation, J. Comput. Appl. Math., 233 (2010), 1723-1732. https://doi.org/10.1016/j.cam.2009.09.001 doi: 10.1016/j.cam.2009.09.001 |
[17] | H. W. Zhang, H. H. Qin, T. Wei, A quasi-reversibility regularization method for the Cauchy problem of the Helmholtz equation, Int. J. Comput. Math., 88 (2011), 839-850. https://doi.org/10.1080/00207160.2010.482986 doi: 10.1080/00207160.2010.482986 |
[18] | H. S. Kaveh, H. Adibi, Mapped regularization methods for the Cauchy problem of the Helmholtz and Laplace equations, Iran. J. Sci. Technol. Trans. A Sci., 45 (2021), 669-682. https://doi.org/10.1007/s40995-020-01050-8 doi: 10.1007/s40995-020-01050-8 |
[19] | S. Q. He, X. F. Feng, A kind of operator regularization method for Cauchy problem of the Helmholtz equation in a multi-dimensional case, Int. J. Comput. Math., 98 (2021), 1349-1364. https://doi.org/10.1080/00207160.2020.1819987 doi: 10.1080/00207160.2020.1819987 |
[20] | Z. P. Li, C. Xu, M. Lan, Z. Qian, A mollification method for a Cauchy problem for the Helmholtz equation, Int. J. Comput. Math., 95 (2018), 2256-2268. https://doi.org/10.1080/00207160.2017.1380193 doi: 10.1080/00207160.2017.1380193 |
[21] | Z. Qian, X. L. Feng, A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation, Appl. Anal., 96 (2017), 1656-1668. https://doi.org/10.1080/00036811.2016.1254776 doi: 10.1080/00036811.2016.1254776 |
[22] | Y. F. Kong, Z. P. Li, X. T. Xiong, An inverse diffraction problem: Shape reconstruction, E. Asian J. Appl. Math., 5 (2015), 342-360. https://doi.org/10.4208/eajam.310315.250915a doi: 10.4208/eajam.310315.250915a |
[23] | C. L. Fu, Y. J. Ma, Y. X. Zhang, F. Yang, A a posteriori regularization for the Cauchy problem for the Helmholtz equation with inhomogeneous Neumann data, Appl. Math. Model., 39 (2015), 4103-4120. https://doi.org/10.1016/j.apm.2014.12.030 doi: 10.1016/j.apm.2014.12.030 |
[24] | X. T. Xiong, X. C. Zhao, J. X. Wang, Spectral Galerkin method and its application to a Cauchy problem of Helmholtz equation, Numer. Algor., 63 (2013), 691-711. https://doi.org/10.1007/s11075-012-9648-9 doi: 10.1007/s11075-012-9648-9 |
[25] | H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Kluwer Academic Publisher, 2000. |
[26] | U. Tautenhahn, Optimal stable approximations for the sideways heat equation, J. Inv. Ill-posed Problems, 5 (1997), 287-307. https://doi.org/10.1515/jiip.1997.5.3.287 doi: 10.1515/jiip.1997.5.3.287 |
[27] | U. Tautenhahn, Optimal stable solution of Cauchy problems for elliptic equations, Z. Anal. Anwend., 15 (1996), 961-984. https://doi.org/10.4171/ZAA/740 doi: 10.4171/ZAA/740 |
[28] | M. M. Sondhi, Reconstruction of objects from their sound-diffraction patterns, J. Acoust. Soc. Amer., 46 (1969), 1158-1164. https://doi.org/10.1121/1.1911836 doi: 10.1121/1.1911836 |
[29] | M. Bertero, C. De Mol, Stability problems in inverse diffraction, IEEE Trans. Antenn. Propag., 29 (1981), 368-372. https://doi.org/10.1109/TAP.1981.1142558 doi: 10.1109/TAP.1981.1142558 |
[30] | F. Santosa, A level-set approach for inverse problems involving obstacles, ESAIM Control Optim. Calc. Var., 1 (1996), 17-33. https://doi.org/10.1051/cocv:1996101 doi: 10.1051/cocv:1996101 |
[31] | X. T. Xiong, X. Y. Fan, M. Li, Spectral method for ill-posed problems based on the balancing principle, Inverse Probl. Sci. Eng., 23 (2015), 292-306. https://doi.org/10.1080/17415977.2014.894039 doi: 10.1080/17415977.2014.894039 |
[32] | R. Acar, C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Probl., 10 (1994), 1217-1229. https://doi.org/10.1088/0266-5611/10/6/003 doi: 10.1088/0266-5611/10/6/003 |
[33] | K. A. Ames, G. W. Clark, J. F. Epperson, S. F. Oppenheimer, A comparison of regularizations for an ill-posed problem, Math. Comput., 67 (1998), 1451-1471. https://doi.org/10.1090/S0025-5718-98-01014-X doi: 10.1090/S0025-5718-98-01014-X |
[34] | A. N. Tikhonov, V. Y. Arsenin, Solutions of ill-posed problems, Washington: Winston and Sons, 1977. |