Research article

Normalized ground states for fractional Kirchhoff equations with critical or supercritical nonlinearity

  • Received: 31 December 2021 Revised: 28 February 2022 Accepted: 15 March 2022 Published: 31 March 2022
  • MSC : 35J65, 47J05, 47J30

  • The aim of this paper is to study the existence of ground states for a class of fractional Kirchhoff type equations with critical or supercritical nonlinearity

    $ (a+b\int_{\mathbb{R}^{3}}|(-\bigtriangleup)^{\frac{s}{2}}u|^{2}dx)(-\bigtriangleup)^{s}u = \lambda u +|u|^{q-2 }u+\mu|u|^{p-2}u, \ x\in\mathbb{R}^{3}, $

    with prescribed $ L^{2} $-norm mass

    $ \int_{\mathbb{R}^{3}}u^{2}dx = c^{2} $

    where $ s\in(\frac{3}{4}, \ 1), \ a, b, c > 0, \ \frac{6+8s}{3} < q < 2_{s}^{\ast}, \ p\geq 2^{\ast}_{s}\ (2^{\ast}_{s} = \frac{6}{3-2s}), \ \mu > 0 $ and $ \lambda\in \mathbb{R} $ as a Langrange multiplier. By combining an appropriate truncation argument with Moser iteration method, we prove that the existence of normalized solutions for the above equation when the parameter $ \mu $ is sufficiently small.

    Citation: Huanhuan Wang, Kexin Ouyang, Huiqin Lu. Normalized ground states for fractional Kirchhoff equations with critical or supercritical nonlinearity[J]. AIMS Mathematics, 2022, 7(6): 10790-10806. doi: 10.3934/math.2022603

    Related Papers:

  • The aim of this paper is to study the existence of ground states for a class of fractional Kirchhoff type equations with critical or supercritical nonlinearity

    $ (a+b\int_{\mathbb{R}^{3}}|(-\bigtriangleup)^{\frac{s}{2}}u|^{2}dx)(-\bigtriangleup)^{s}u = \lambda u +|u|^{q-2 }u+\mu|u|^{p-2}u, \ x\in\mathbb{R}^{3}, $

    with prescribed $ L^{2} $-norm mass

    $ \int_{\mathbb{R}^{3}}u^{2}dx = c^{2} $

    where $ s\in(\frac{3}{4}, \ 1), \ a, b, c > 0, \ \frac{6+8s}{3} < q < 2_{s}^{\ast}, \ p\geq 2^{\ast}_{s}\ (2^{\ast}_{s} = \frac{6}{3-2s}), \ \mu > 0 $ and $ \lambda\in \mathbb{R} $ as a Langrange multiplier. By combining an appropriate truncation argument with Moser iteration method, we prove that the existence of normalized solutions for the above equation when the parameter $ \mu $ is sufficiently small.



    加载中


    [1] D. Applebaum, L$\acute{e}$vy processes and stochastic calculus, 2 Eds., Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511809781
    [2] D. Applebaum, L$\acute{e}$vy processes-from probability to finance and quantum groups, Notices of the AMS, 51 (2004), 1336–1347.
    [3] R. Servadei, E. Valdinoci, Fractional Laplacian equations with critivcal Sobolev exponent, Rev. Mat. Complut., 28 (2015), 655–676. https://doi.org/10.1007/s13163-015-0170-1 doi: 10.1007/s13163-015-0170-1
    [4] H. Luo, Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var., 59 (2020), 143. https://doi.org/10.1007/s00526-020-01814-5 doi: 10.1007/s00526-020-01814-5
    [5] H. Lu, X. Zhang, Positive solution for a class of nonlocal elliptic equations, Appl. Math. Lett., 88 (2019), 125–131. https://doi.org/10.1016/j.aml.2018.08.019 doi: 10.1016/j.aml.2018.08.019
    [6] Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340–353. http://doi.org/10.22436/jnsa.008.04.07 doi: 10.22436/jnsa.008.04.07
    [7] B. Yan, C. An, The sign-changing solutions for a class of nonlocal elliptic problem in an annulus, Topol. Methods Nonlinear Anal., 55 (2020), 1–18. http://doi.org/10.12775/TMNA.2019.081 doi: 10.12775/TMNA.2019.081
    [8] R. Frank, E. Lenzmann, L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., 69 (2016), 1671–1726. https://doi.org/10.1002/cpa.21591 doi: 10.1002/cpa.21591
    [9] F. Jin, B. Yan, The sign-changing solutions for nonlinear elliptic problem with Carrier type, J. Math. Anal. Appl., 487 (2020), 124002. https://doi.org/10.1016/j.jmaa.2020.124002 doi: 10.1016/j.jmaa.2020.124002
    [10] M. Wang, X. Qu, H. Lu, Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity, AIMS Mathematics, 6 (2021), 5028–5039. https://doi.org/10.3934/math.2021297 doi: 10.3934/math.2021297
    [11] H. Lu, X. Qu, J. Wang, Sign-changing and constant-sign solutions for elliptic problems involving nonlocal integro-differential operators, SN Partial Differ. Equ. Appl., 1 (2020), 33. https://doi.org/10.1007/s42985-020-00028-w doi: 10.1007/s42985-020-00028-w
    [12] K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}^{N}$, Nonlinear Anal. Real, 21 (2015), 76–86. https://doi.org/10.1016/j.nonrwa.2014.06.008 doi: 10.1016/j.nonrwa.2014.06.008
    [13] T. Bartsch, N. Soave, Multiple normalized solutions for a competing system of Schr$\ddot{o}$dinger equations, Calc. Var., 58 (2019), 22. https://doi.org/10.1007/s00526-018-1476-x doi: 10.1007/s00526-018-1476-x
    [14] G. Gu, X. Tang, J. Shen, Multiple solutions for fractional Schr$\ddot{o}$dinger-Poisson system with critical or supercritical nonlinearity, Appl. Math. Lett., 111 (2021), 106605. https://doi.org/10.1016/j.aml.2020.106605 doi: 10.1016/j.aml.2020.106605
    [15] A. Mao, Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. Theor., 70 (2009), 1275–1287. https://doi.org/10.1016/j.na.2008.02.011 doi: 10.1016/j.na.2008.02.011
    [16] H. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Method. Appl. Sci., 38 (2015), 2663–2679. https://doi.org/10.1002/mma.3247 doi: 10.1002/mma.3247
    [17] M. Mu, H. Lu, Existence and multiplicity of positive solutions for Schrodinger-Kirchhoff-Poisson system with Singularity, J. Funct. Space., 2017 (2017), 5985962. https://doi.org/10.1155/2017/5985962 doi: 10.1155/2017/5985962
    [18] L. Gao, C. Chen, C. Zhu, Existence of sign-changning solutions for Kirchhoff equations with critical or supercritical nonlinearity, Appl. Math. Lett., 107 (2020), 106424. https://doi.org/10.1016/j.aml.2020.106424 doi: 10.1016/j.aml.2020.106424
    [19] P. L. Lions, Sym$\acute{e}$trie et compacit$\acute{e}$ dans les espaces de Sobolev, J. Funct. Anal., 3 (1982), 315–334. https://doi.org/10.1016/0022-1236(82)90072-6 doi: 10.1016/0022-1236(82)90072-6
    [20] B. Yan, D. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl., 442 (2016), 72–102. https://doi.org/10.1016/j.jmaa.2016.04.023 doi: 10.1016/j.jmaa.2016.04.023
    [21] Z. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456–463. https://doi.org/10.1016/j.jmaa.2005.06.102 doi: 10.1016/j.jmaa.2005.06.102
    [22] Y. Wang, Y. Liu, Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, Bound. Value Probl., 2018 (2018), 193. https://doi.org/10.1186/s13661-018-1114-8 doi: 10.1186/s13661-018-1114-8
    [23] X. He, W. Zou, Ground state solutions for a class of fractional Kirchhoff equations with critical growth, Sci. China Math., 62 (2019), 853–890. https://doi.org/10.1007/s11425-017-9399-6 doi: 10.1007/s11425-017-9399-6
    [24] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. Theor., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
    [25] G. Li, H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equations, 257 (2014), 378–396. https://doi.org/10.1016/j.jde.2014.04.011 doi: 10.1016/j.jde.2014.04.011
    [26] L. Liu, H. Chen, J. Yang, Normalized solutions to the fractional Kirchhoff equation with combined nonlinearities, 2021, arXiv: 2104.06053v1.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1664) PDF downloads(122) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog