Research article

Design of reasonable initialization weighted enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems

  • Received: 22 December 2021 Revised: 01 March 2022 Accepted: 04 March 2022 Published: 18 March 2022
  • MSC : 68XX, 68Uxx

  • Interval type-2 fuzzy logic systems (IT2 FLSs) already become an emerging technology in recent years. As the most popular type-reduction (TR) algorithms, Karnik-Mendel (KM) algorithms own the advantage of maintaining the uncertainties flow in systems. This paper analyzes the initialization for KM types of algorithms. Furthermore, the weighting approaches of them are also given by means of the Newton-Cotes quadrature formulas. Importantly, the reasonable initialization weighted enhanced Karnik-Mendel (RIWEKM) algorithms are provided to complete the centroid type-reduction of IT2 FLSs. Three computer simulation experiments illustrate that, the proposed RIWEKM algorithms own both smaller absolute errors and faster convergence speeds in contrast to the EKM and RIEKM algorithms.

    Citation: Yang Chen, Jiaxiu Yang, Chenxi Li. Design of reasonable initialization weighted enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems[J]. AIMS Mathematics, 2022, 7(6): 9846-9870. doi: 10.3934/math.2022549

    Related Papers:

  • Interval type-2 fuzzy logic systems (IT2 FLSs) already become an emerging technology in recent years. As the most popular type-reduction (TR) algorithms, Karnik-Mendel (KM) algorithms own the advantage of maintaining the uncertainties flow in systems. This paper analyzes the initialization for KM types of algorithms. Furthermore, the weighting approaches of them are also given by means of the Newton-Cotes quadrature formulas. Importantly, the reasonable initialization weighted enhanced Karnik-Mendel (RIWEKM) algorithms are provided to complete the centroid type-reduction of IT2 FLSs. Three computer simulation experiments illustrate that, the proposed RIWEKM algorithms own both smaller absolute errors and faster convergence speeds in contrast to the EKM and RIEKM algorithms.



    加载中


    [1] J. M. Mendel, Uncertain rule-based fuzzy systems, Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-51370-6
    [2] H. Hagras, C. Wagner, Towards the wide spread use of type-2 fuzzy logic systems in real world applications, IEEE Comput. Intell. M., 7 (2012), 14–24. https://doi.org/10.1109/MCI.2012.2200621 doi: 10.1109/MCI.2012.2200621
    [3] J. M. Mendel, Type-2 fuzzy sets and systems: An overview, IEEE Comput. Intell. M., 2 (2007), 20–29. https://doi.org/10.1109/MCI.2007.380672 doi: 10.1109/MCI.2007.380672
    [4] M. H. F. Zarandi, B. Rezaee, I. B. Turksen, E. Neshat, A type-2 fuzzy rule-based expert system model for stock price analysis, Expert Syst. Appl., 36 (2009), 139–154. https://doi.org/10.1016/j.eswa.2007.09.034 doi: 10.1016/j.eswa.2007.09.034
    [5] Y. Chen, D. Z. Wang, S. C. Tong, Forecasting studies by designing Mamdani interval type-2 fuzzy logic systems: with combination of BP algorithms and KM algorithms, Neurocomputing, 174 (2016), 1133–1146. https://doi.org/10.1016/j.neucom.2015.10.032 doi: 10.1016/j.neucom.2015.10.032
    [6] A. Khosravi, S. Nahavandi, Load forecasting using interval type-2 fuzzy logic systems: Optimal type reduction, IEEE T. Ind. Electron., 10 (2014), 1055–1063. https://doi.org/10.1109/TII.2013.2285650 doi: 10.1109/TII.2013.2285650
    [7] M. Biglarbegian, W. W. Melek, J. M. Mendel, Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments, IEEE T. Ind. Electron., 58 (2011), 1371–1384. https://doi.org/10.1109/TIE.2010.2049718 doi: 10.1109/TIE.2010.2049718
    [8] D. Z. Wang, Y. Chen, Study on permanent magnetic drive forecasting by designing Takagi Sugeno Kang type interval type-2 fuzzy logic systems, T. I. Meas. Control, 40 (2018), 2011–2023. https://doi.org/10.1177/0142331217694682 doi: 10.1177/0142331217694682
    [9] R. S. Rama, P. Latha, An effective torque ripple reduction for permanent magnet synchronous motor using ant colony optimization, Int. J. Fuzzy Syst., 17 (2015), 577–584. https://doi.org/10.1007/s40815-015-0077-5 doi: 10.1007/s40815-015-0077-5
    [10] O. Linda, M. Manic, Interval type-2 voter design for fault tolerant systems, Inform. Sci., 181 (2011), 2933–2950. https://doi.org/10.1016/j.ins.2011.03.008 doi: 10.1016/j.ins.2011.03.008
    [11] A. Niewiadomski, On finity, countability, cardinalities, and cylindric extensions of type-2 fuzzy sets in linguistic summarization of databases, IEEE T. Fuzzy Syst., 18 (2010), 532–545. https://doi.org/10.1109/TFUZZ.2010.2042719 doi: 10.1109/TFUZZ.2010.2042719
    [12] D. R. Wu, J. M. Mendel, Uncertainty measures for interval type-2 fuzzy sets, Inform. Sci., 177 (2007), 5378–2393. https://doi.org/10.1016/j.ins.2007.07.012 doi: 10.1016/j.ins.2007.07.012
    [13] A. Khosravi, S. Nahavandi, D. Creighton, D. Srinivasan, Interval type-2 fuzzy logic systems for load forecasting: a comparative study, IEEE T. Power Syst., 27 (2012), 1274–1282. https://doi.org/10.1109/TPWRS.2011.2181981 doi: 10.1109/TPWRS.2011.2181981
    [14] Y. Chen, Study on weighted Nagar-Bardini algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, J. Intell. Fuzzy Syst., 34 (2018), 2417–2428. https://doi.org/10.3233/JIFS-171669 doi: 10.3233/JIFS-171669
    [15] J. M. Mendel, On KM algorithms for solving type-2 fuzzy sets problems, IEEE T. Fuzzy Syst., 21 (2013), 426–446. https://doi.org/10.1109/TFUZZ.2012.2227488 doi: 10.1109/TFUZZ.2012.2227488
    [16] T. Kumbasar, Revisiting Karnik-Mendel algorithms in the framework of linear fractional programming, Int. J. Approx. Reason., 82 (2017), 1–21. https://doi.org/10.1016/j.ijar.2016.11.019 doi: 10.1016/j.ijar.2016.11.019
    [17] J. M. Mendel, F. L. Liu, Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set, IEEE T. Fuzzy Syst., 15 (2007), 309–320. https://doi.org/10.1109/TFUZZ.2006.882463 doi: 10.1109/TFUZZ.2006.882463
    [18] D. R. Wu, J. M. Mendel, Perceptual reasoning for perceptual computing: a similarity based approach, IEEE T. Fuzzy Syst., 17 (2009), 1397–1411. https://doi.org/10.1109/TFUZZ.2009.2032652 doi: 10.1109/TFUZZ.2009.2032652
    [19] D. R. Wu, J. M. Mendel, Enhanced Karnik-Mendel algorithms, IEEE T. Fuzzy Syst., 17 (2009), 923–934. https://doi.org/10.1109/TFUZZ.2008.924329 doi: 10.1109/TFUZZ.2008.924329
    [20] X. W. Liu, J. M. Mendel, D. R. Wu, Study on enhanced Karnik-Mendel algorithms: initialization explanations and computation improvements, Inform. Sci., 184 (2012), 75–91. https://doi.org/10.1016/j.ins.2011.07.042 doi: 10.1016/j.ins.2011.07.042
    [21] Y. Chen, Study on sampling-based discrete noniterative algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, Soft Comput., 24 (2020), 11819–11828. https://doi.org/10.1007/s00500-020-04998-2 doi: 10.1007/s00500-020-04998-2
    [22] O. Castillo, P. Melin, E. Ontiveros, C. Peraza, P. Ochoa, F. Valdez, et al., A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics, Eng. Appl. Artif. Intell., 85 (2019), 666–680. https://doi.org/10.1016/j.engappai.2019.07.020 doi: 10.1016/j.engappai.2019.07.020
    [23] G. M. Méndez, M. D. L. A. Hernandez, Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems, Inform. Sci., 220 (2013), 149–169. https://doi.org/10.1016/j.ins.2012.01.024 doi: 10.1016/j.ins.2012.01.024
    [24] J. M. Mendel, Type-2 fuzzy sets and systems: an overview, IEEE Comput. Intell. Mag., 2 (2007), 20–29. https://doi.org/10.1109/MCI.2007.380672 doi: 10.1109/MCI.2007.380672
    [25] Y. Chen, D. Z. Wang, Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik-Mendel algorithms, Soft Comput., 22 (2018), 1361–1380. https://doi.org/10.1007/s00500-017-2938-3 doi: 10.1007/s00500-017-2938-3
    [26] Y. Chen, D. Z. Wang, Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted Nie-Tan algorithms, Soft Comput., 22 (2018), 7659–7678. https://doi.org/10.1007/s00500-018-3551-9 doi: 10.1007/s00500-018-3551-9
    [27] D. R. Wu, Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons, IEEE T. Fuzzy Syst., 21 (2013), 80–99. https://doi.org/10.1109/TFUZZ.2012.2201728 doi: 10.1109/TFUZZ.2012.2201728
    [28] T. Wang, Y. Chen, S. C. Tong, Fuzzy reasoning models and algorithms on type-2 fuzzy sets, Int. J. Innov. Comput. Inform. Control, 24 (2008), 2451–2460.
    [29] J. W. Li, R. John, S. Coupland, G. Kendall, On Nie-Tan operator and type-reduction of interval type-2 fuzzy sets, IEEE T. Fuzzy Syst., 26 (2018), 1036–1039. https://doi.org/10.1109/TFUZZ.2017.2666842 doi: 10.1109/TFUZZ.2017.2666842
    [30] S. Greenfield, F. Chiclana, Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set, Int. J. Approx. Reason., 54 (2013), 1013–1033. https://doi.org/10.1016/j.ijar.2013.04.013 doi: 10.1016/j.ijar.2013.04.013
    [31] E. Ontiveros-Robles, P. Melin, O. Castillo, New methodology to approximate type-reduction based on a continuous root-finding karnik mendel algorithm, Algorithms, 10 (2017), 77–96. https://doi.org/10.3390/a10030077 doi: 10.3390/a10030077
    [32] Y. Chen, J. X. Wu, J. Lan, Study on reasonable initialization enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, AIMS Math., 5 (2020), 6149–6168. https://doi.org/10.3934/math.2020395 doi: 10.3934/math.2020395
    [33] J. M. Mendel, X. W. Liu, Simplified interval type-2 fuzzy logic systems, IEEE T. Fuzzy Syst., 21 (2013), 1056–1069. https://doi.org/10.1109/TFUZZ.2013.2241771 doi: 10.1109/TFUZZ.2013.2241771
    [34] M. A. Khanesar, A. Jalalian, O. Kaynak, H. Gao, Improving the speed of center of sets type reduction in interval type-2 fuzzy systems by eliminating the need for sorting, IEEE T. Fuzzy Syst., 25 (2017), 1193–1206. https://doi.org/10.1109/TFUZZ.2016.2602392 doi: 10.1109/TFUZZ.2016.2602392
    [35] J. M. Mendel, General type-2 fuzzy logic systems made simple: A tutorial, IEEE T. Fuzzy Syst., 22 (2014), 1162–1182. https://doi.org/10.1109/TFUZZ.2013.2286414 doi: 10.1109/TFUZZ.2013.2286414
    [36] C. H. Hsu, C. F. Juang, Evolutionary robot wall-following control using type-2 fuzzy controller with species-de-activated continuous ACO, IEEE T. Fuzzy Syst., 21 (2013), 100–112. https://doi.org/10.1109/TFUZZ.2012.2202665 doi: 10.1109/TFUZZ.2012.2202665
    [37] Y. Chen, D. Z. Wang, W. Ning, Forecasting by TSK general type-2 fuzzy logic systems optimized with genetic algorithms, Optim. Control Appl. Method., 39 (2018), 393–409. https://doi.org/10.1002/oca.2353 doi: 10.1002/oca.2353
    [38] F. Gaxiola, P. Melin, F. Valdez, J. R. Castro, O. Castillo, Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO, Appl. Soft Comput., 38 (2016), 860–871. https://doi.org/10.1016/j.asoc.2015.10.027 doi: 10.1016/j.asoc.2015.10.027
    [39] Y. Chen, D. Z. Wang, Forecasting by general type-2 fuzzy logic systems optimized with QPSO algorithms, Int. J. Control Autom. Syst., 15 (2017), 2950–2958. https://doi.org/10.1007/s12555-017-0793-0 doi: 10.1007/s12555-017-0793-0
    [40] Y. Maldonado, O. Castillo, P. Melin, Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications, Appl. Soft Comput., 13 (2013), 496–508. https://doi.org/10.1016/j.asoc.2012.08.032 doi: 10.1016/j.asoc.2012.08.032
    [41] E. Ontiveros-Robles, P. Melin, O. Castillo, Comparative analysis of noise robustness of type 2 fuzzy logic controllers, Kybernetika, 54 (2018), 175–201. https://doi.org/10.14736/kyb-2018-1-0175 doi: 10.14736/kyb-2018-1-0175
    [42] L. Cervantes, O. Castillo, Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control, Inform. Sci., 324 (2015), 247–256. https://doi.org/10.1016/j.ins.2015.06.047 doi: 10.1016/j.ins.2015.06.047
    [43] O. Castillo, L. Amador-Angulo, J. R. Castro, M. Garcia-Valdez, A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems, Inform. Sci., 354 (2016), 257–274. https://doi.org/10.1016/j.ins.2016.03.026 doi: 10.1016/j.ins.2016.03.026
    [44] C. W. Tao, J. S. Taur, C. W. Chang, Y. H. Chang, Simplified type-2 fuzzy sliding controller for wing rocket system, Fuzzy Set. Syst., 207 (2012), 111–129. https://doi.org/10.1016/j.fss.2012.02.015 doi: 10.1016/j.fss.2012.02.015
    [45] D. R. Wu, J. M. Mendel, Recommendations on designing practical interval type-2 fuzzy systems, Eng. Appl. Artif. Intell., 85 (2019), 182–193. https://doi.org/10.1016/j.engappai.2019.06.012 doi: 10.1016/j.engappai.2019.06.012
    [46] S. C. Tong, Y. M. Li, Observer-based adaptive fuzzy backstepping control of uncertain pure-feedback systems, Sci. China Inform. Sci., 57 (2014), 1–14. https://doi.org/10.1007/s11432-013-5043-y doi: 10.1007/s11432-013-5043-y
    [47] M. Deveci, I. Z. Akyurt, S. Yavuz, GIS-based interval type-2 fuzzy set for public bread factory site selection, J. Enterp. Inform. Manag., 31 (2018), 820–847. https://doi.org/10.1108/JEIM-02-2018-0029 doi: 10.1108/JEIM-02-2018-0029
    [48] S. C. Tong, Y. M. Li, Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties, Sci. China Inform. Sci., 53 (2010), 307–324. https://doi.org/10.1007/s11432-010-0031-y doi: 10.1007/s11432-010-0031-y
    [49] F. Y. Wang, H. Mo, Some fundamental issues on type-2 fuzzy sets, Acta Autom. Sin., 43 (2017), 1114–1141.
    [50] H. Mo, F. Y. Wang, M. Zhou, R. Li, Z. Xiao, Footprint of uncertainty for type-2 fuzzy sets, Inform. Sci., 272 (2014), 96–110. https://doi.org/10.1016/j.ins.2014.02.092 doi: 10.1016/j.ins.2014.02.092
    [51] Y. Chen, J. X. Yang, Study on center-of-sets type-reduction of interval type-2 fuzzy logic systems with noniterative algorithms, J. Intell. Fuzzy Syst., 40 (2021), 11099–11106. https://doi.org/10.3233/JIFS-202264 doi: 10.3233/JIFS-202264
    [52] X. Tao, J. Yi, Z. Pu, T. Xiong, Robust adaptive tracking control for hypersonic vehicle based on interval type-2 fuzzy logic system and small-gain approach, IEEE T. Cybernetics, 51 (2021), 2504–2517. https://doi.org/10.1109/TCYB.2019.2927309 doi: 10.1109/TCYB.2019.2927309
    [53] Y. Chen, J. X. Yang, Design of back propagation optimized Nagar-Bardini structure-based interval type-2 fuzzy logic systems for fuzzy identification, T. I. Meas. Control, 43 (2021), 2780–2787. https://doi.org/10.1177/01423312211006635 doi: 10.1177/01423312211006635
    [54] L. Wu, F. Qian, L. Wang, X. Ma, An improved type-reduction algorithm for general type-2 fuzzy sets, Inform. Sci., 2022.
    [55] Y. Chen, Study on weighted-based noniterative algorithms for computing the centroids of general type-2 fuzzy sets, Int. J. Fuzzy Syst., 24 (2022), 587–606. https://doi.org/10.1007/s40815-021-01166-y doi: 10.1007/s40815-021-01166-y
    [56] C. Chen, D. Wu, J. M. Garibaldi, R. I. John, J. Twycross, J. M. Mendel, A comprehensive study of the efficiency of type-reduction algorithms, IEEE T. Fuzzy Syst., 29 (2020), 1556–1566. https://doi.org/10.1109/TFUZZ.2020.2981002 doi: 10.1109/TFUZZ.2020.2981002
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1370) PDF downloads(55) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog