Research article

Copulas generated by mixtures of weighted distributions

  • Received: 06 December 2021 Revised: 21 January 2022 Accepted: 09 February 2022 Published: 07 March 2022
  • MSC : 60E05, 60E15, 62N05

  • In this paper, we characterize several partial dependencies in a general mixture model of weighted distributions with a parametric weight function that encompasses many well-known frailty models. There are well-known frailty models in survival analysis satisfying the proposed mixture model which are used to examine the results. The mixture-based copula functions associated with the mixture model are characterized. Examples are given to draw the copula functions out from respected mixture models.

    Citation: Mashael A. Alshehri, Mohamed Kayid. Copulas generated by mixtures of weighted distributions[J]. AIMS Mathematics, 2022, 7(5): 8953-8974. doi: 10.3934/math.2022499

    Related Papers:

  • In this paper, we characterize several partial dependencies in a general mixture model of weighted distributions with a parametric weight function that encompasses many well-known frailty models. There are well-known frailty models in survival analysis satisfying the proposed mixture model which are used to examine the results. The mixture-based copula functions associated with the mixture model are characterized. Examples are given to draw the copula functions out from respected mixture models.



    加载中


    [1] J. Y. Ahn, S. Fuchs, R. Oh, A copula transformation in multivariate mixed discrete-continuous models, Fuzzy Set. Syst., 415 (2021), 54–75. https://doi.org/10.1016/j.fss.2020.11.008 doi: 10.1016/j.fss.2020.11.008
    [2] A. A. Albabtain, M. Shrahili, M. A. Al-Shehri, M. Kayid, Stochastic comparisons of weighted distributions and their mixtures, Entropy, 22 (2020), 843. https://doi.org/10.3390/e22080843 doi: 10.3390/e22080843
    [3] M. A. Alshehri, M. Kayid, Mean residual lifetime frailty models: A weighted perspective, Math. Probl. Eng., 2021 (2021), 3974858. https://doi.org/10.1155/2021/3974858 doi: 10.1155/2021/3974858
    [4] J. Bartoszewicz, M. Skolimowska, Preservation of classes of life distributions and stochastic orders under weighting, Stat. Probabil. lett., 76 (2006), 587–596. https://doi.org/10.1016/j.spl.2005.09.003 doi: 10.1016/j.spl.2005.09.003
    [5] K. F. Bedair, Y. L. Hong, H. R. Al-Khalidi, Copula-frailty models for recurrent event data based on Monte Carlo EM algorithm, J. Stat. Comput. Sim., 91 (2021), 3530–3548. https://doi.org/10.1080/00949655.2021.1942471 doi: 10.1080/00949655.2021.1942471
    [6] F. Belzunce, C. M. Riquelme, J. Mulero, An introduction to stochastic orders, Academic Press, 2015. https://doi.org/10.1016/C2014-0-04775-2
    [7] F. Belzunce, J. M. Ruiz, M. C. Ruiz, On preservation of some shifted and proportional orders by systems, Stat. Probabil. Lett., 60 (2002), 141–154. https://doi.org/10.1016/S0167-7152(02)00302-4 doi: 10.1016/S0167-7152(02)00302-4
    [8] P. J. Boland, M. Hollander, K. Joag-Dev, S. Kochar, Bivariate dependence properties of order statistics, J. Multivariate. Anal., 56 (1996), 75–89. https://doi.org/10.1006/jmva.1996.0005 doi: 10.1006/jmva.1996.0005
    [9] F. Durante, C. Sempi, Principles of copula theory, New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b18674
    [10] T. Emura, S. Matsui, V. Rondeau, Survival analysis with correlated endpoints: Joint Frailty-Copula models, Singapore: Springer, 2019. https://doi.org/10.1007/978-981-13-3516-7
    [11] J. D. Esary, F. Proschan, Relationships among some concepts of bivariate dependence, Ann. Math. Stat., 43 (1972), 651–655.
    [12] R. A. Fisher, The effect of methods of ascertainment upon the estimation of frequencies, Ann. Eugenics, 6 (1934), 13–25. https://doi.org/10.1111/j.1469-1809.1934.tb02105.x doi: 10.1111/j.1469-1809.1934.tb02105.x
    [13] M. Frechet, Sur les tableaux dont les marges et les bornes sont données, Review Int. Stat. Inst., 28 (1960), 10–32. https://doi.org/10.2307/1401846 doi: 10.2307/1401846
    [14] P. Hougaard, Frailty models for survival data, Lifetime Data Anal., 1 (1995), 255–273. https://doi.org/10.1007/BF00985760 doi: 10.1007/BF00985760
    [15] S. Izadkhah, A. H. R. Roknabadi, G. R. M. Borzadaran, Aspects of the mean residual life order for weighted distributions, Statistics, 48 (2014), 851–861. https://doi.org/10.1080/02331888.2013.821475 doi: 10.1080/02331888.2013.821475
    [16] S. Izadkhah, M. Amini, G. R. M. Borzadaran, Preservation of dependence concepts under bivariate weighted distributions, Commun. Stat.-Theor. M., 45 (2016), 4589–4599. https://doi.org/10.1080/03610926.2014.923459 doi: 10.1080/03610926.2014.923459
    [17] S. Izadkhah, M. Kayid, Reliability analysis of the harmonic mean inactivity time order, IEEE T. Reliab., 62 (2013), 329–337. https://doi.org/10.1109/TR.2013.2255793 doi: 10.1109/TR.2013.2255793
    [18] S. Izadkhah, A. H. Rezaei, M. Amini, G. R. M. Borzadaran, A general approach for preservation of some aging classes under weighting, Commun. Stat.-Theor. M., 42 (2013), 1899–1909. https://doi.org/10.1080/03610926.2011.598998 doi: 10.1080/03610926.2011.598998
    [19] S. Izadkhah, A. H. R. Roknabadi, G. R. M. Borzadaran, On properties of reversed mean residual life order for weighted distributions, Commun. Stat.-Theor. M., 42 (2013), 838–851. https://doi.org/10.1080/03610926.2011.586484 doi: 10.1080/03610926.2011.586484
    [20] P. Jaworski, F. Durante, W. K. Hardle, Copulae in mathematical and quantitative finance, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-35407-6
    [21] H. Joe, Dependence modeling with copulas, New York: CRC press, 2014. https://doi.org/10.1201/b17116
    [22] S. Karlin, Total positivity, Stanford: Stanford University Press, 1968.
    [23] M. Kayid, I. A. Ahmad, On the mean inactivity time ordering with reliability applications, Probab. Eng. Inform. Sci., 18 (2004), 395–409. https://doi.org/10.1017/S0269964804183071 doi: 10.1017/S0269964804183071
    [24] M. Kayid, S. Izadkhah, Mean inactivity time function, associated orderings, and classes of life distributions, IEEE T. Reliab., 63 (2014), 593–602. https://doi.org/10.1109/TR.2014.2315954 doi: 10.1109/TR.2014.2315954
    [25] M. Kayid, S. Izadkhah, A new extended mixture model of residual lifetime distributions. Oper. Res. Lett. 43 (2015), 183–188. https://doi.org/10.1016/j.orl.2015.01.011
    [26] M. Kayid, S. Izadkhah, J. Jarrahiferiz, P. Asghari, A mixture model of size-biased distributions, Metrika, 79 (2016), 513–529. https://doi.org/10.1007/s00184-015-0565-5 doi: 10.1007/s00184-015-0565-5
    [27] M. Kayid, S. Izadkhah, A. M. Abouammoh, Average inactivity time model, associated orderings and reliability properties, Physica A., 492 (2018) 1389–1398. https://doi.org/10.1016/j.physa.2017.11.066
    [28] M. Kayid, A. Alrubian, A. Abouammoh, Stochastic analysis of an age-dependent mixture truncation model, Nav. Res. Log., 68 (2021), 963–972. https://doi.org/10.1002/nav.21980 doi: 10.1002/nav.21980
    [29] R. A. Khan, D. Bhattacharyya, M. Mitra, On some properties of the mean inactivity time function, Stat. Probabil. Lett., 170 (2021), 108993. https://doi.org/10.1016/j.spl.2020.108993 doi: 10.1016/j.spl.2020.108993
    [30] S. Kotz, D. Drouet, Correlation and dependence, World Scientific, 2001. https://doi.org/10.1142/p226
    [31] C. Kundu, A. K. Nanda, Some reliability properties of the inactivity time, Commun. Stat.-Theor. M., 39 (2010), 899–911. https://doi.org/10.1080/03610920902807895 doi: 10.1080/03610920902807895
    [32] X. H. Li, P. Zhao, On the mixture of proportional odds models, Commun. Stat.-Theor. M., 40 (2010), 333–344. https://doi.org/10.1080/03610920903392665 doi: 10.1080/03610920903392665
    [33] X. L. Ling, P. Zhao, P. Li, A note on the stochastic properties of a scale change random effects model, Stat. Probabil. Lett., 83 (2013), 2407–2414. https://doi.org/10.1016/j.spl.2013.06.034 doi: 10.1016/j.spl.2013.06.034
    [34] A. W. Marshall, I. Olkin, Life distributions: Structure of nonparametric, semiparametric and parametric families, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-68477-2
    [35] N. Misra, N. Gupta, I. D. Dhariyal, Preservation of some aging properties and stochastic orders by weighted distributions, Commun. Stat.-Theor. M., 37 (2008), 627–644. https://doi.org/10.1080/03610920701499506 doi: 10.1080/03610920701499506
    [36] N. Misra, S. Naqvi, A unified approach to stochastic comparisons of multivariate mixture models, Commun. Stat.-Theor. M., 47 (2018), 4724–4740. https://doi.org/10.1080/03610926.2018.1445859 doi: 10.1080/03610926.2018.1445859
    [37] K. C. Mosler, Stochastic orders and decision under risk, IMS, 1991.
    [38] R. B. Nelsen, An introduction to copulas, New York: Springer, 2007. https://doi.org/10.1007/0-387-28678-0
    [39] G. P. Patil, C. R. Rao, The weighted distributions: A survey of their applications, Amsterdam: North Holland, 1977,383–405.
    [40] G. P. Patil, C. R. Rao, Weighted distributions and size-biased sampling with applications to wild-life populations and human families, Biometrics, 34 (1978), 179–189.
    [41] C. R. Rao, On discrete distributions arising out of methods of ascertainment, Sankhya: Indian J. Stat. Ser. A, 27 (1965), 311–324.
    [42] M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-34675-5
    [43] M. Shaked, A family of concepts of dependence for bivariate distributions, J. Am. Stat. Assoc., 72 (1977), 642–650.
    [44] P. Trivedi, D. Zimmer, A note on identification of bivariate copulas for discrete count data, Econometrics, 5 (2017), 10. https://doi.org/10.3390/econometrics5010010 doi: 10.3390/econometrics5010010
    [45] M. Vrac, L. Billard, E. Diday, A. Chedin, Copula analysis of mixture models, Comput. Stat., 27 (2012), 427–457. https://doi.org/10.1007/s00180-011-0266-0 doi: 10.1007/s00180-011-0266-0
    [46] Y. C. Wang, T. Emura, T. H. Fan, S. M. S. Lo, R. A. Wilke, Likelihood-based inference for a frailty-copula model based on competing risks failure time data, Qual. Reliab. Eng. Int., 36 (2020), 1622–1638. https://doi.org/10.1002/qre.2650 doi: 10.1002/qre.2650
    [47] M. C Xu, X. H. Li, Negative dependence in frailty models, J. Stat. Plan. Infer., 138 (2008), 1433–1441. https://doi.org/10.1016/j.jspi.2007.04.029 doi: 10.1016/j.jspi.2007.04.029
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1662) PDF downloads(95) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog