Research article

A new structure of solutions to the coupled nonlinear Maccari's systems in plasma physics

  • Received: 14 December 2021 Revised: 01 February 2022 Accepted: 18 February 2022 Published: 01 March 2022
  • MSC : 34A34, 35A08, 35C05, 35Q35

  • The nonlinear Maccari's systems depict the dynamics of isolated waves, detained in a small part of space, in optical communications, hydrodynamics and plasma physics. In this paper, we construct some new solutions for the Maccari's systems, using the unified solver technique based on He's variations technique. These solutions prescribe some vital complex phenomena in plasma physics. The proposed solver will be used as a box solver for considering various models in applied science and new physics. Some graphs are presented in order to display the dynamical behaviour of the gained solutions.

    Citation: R. A. Alomair, S. Z. Hassan, Mahmoud A. E. Abdelrahman. A new structure of solutions to the coupled nonlinear Maccari's systems in plasma physics[J]. AIMS Mathematics, 2022, 7(5): 8588-8606. doi: 10.3934/math.2022479

    Related Papers:

  • The nonlinear Maccari's systems depict the dynamics of isolated waves, detained in a small part of space, in optical communications, hydrodynamics and plasma physics. In this paper, we construct some new solutions for the Maccari's systems, using the unified solver technique based on He's variations technique. These solutions prescribe some vital complex phenomena in plasma physics. The proposed solver will be used as a box solver for considering various models in applied science and new physics. Some graphs are presented in order to display the dynamical behaviour of the gained solutions.



    加载中


    [1] M. Younis, N. Cheemaa, S. Mahmood, S. Rizvi, On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential, Opt. Quant. Electron., 48 (2016), 542. http://dx.doi.org/10.1007/s11082-016-0809-2 doi: 10.1007/s11082-016-0809-2
    [2] O. González-Gaxiola, A. Biswas, Akhmediev breathers, Peregrine solitons and Kuznetsov-Ma solitons in optical fibers and PCF by Laplace-Adomian decomposition method, Optik, 172 (2018), 930–939. http://dx.doi.org/10.1016/j.ijleo.2018.07.102 doi: 10.1016/j.ijleo.2018.07.102
    [3] H. Triki, A. Biswas, Dark solitons for a generalized nonlinear Schrödinger equation with parabolic law and dual-power law nonlinearities, Math. Method. Appl. Sci., 34 (2011), 958–962. http://dx.doi.org/10.1002/mma.1414 doi: 10.1002/mma.1414
    [4] S. Hassan, N. Alyamani, M. Abdelrahman, A construction of new traveling wave solutions for the 2D Ginzburg-Landau equation, Eur. Phys. J. Plus, 134 (2019), 425. http://dx.doi.org/10.1140/epjp/i2019-12811-y doi: 10.1140/epjp/i2019-12811-y
    [5] A. Wazwaz, The integrable time-dependent sine-Gordon with multiple optical kink solutions, Optik, 182 (2019), 605–610. http://dx.doi.org/10.1016/j.ijleo.2019.01.018 doi: 10.1016/j.ijleo.2019.01.018
    [6] M. Inc, S. Hassan, M. Abdelrahman, R. Alomair, Y. Chu, Fundamental solutions for the long-short-wave interaction system, Open Phys., 18 (2020), 1093–1099. http://dx.doi.org/10.1515/phys-2020-0220 doi: 10.1515/phys-2020-0220
    [7] Y. Alharbi, M. Abdelrahman, M. Sohaly, S. Ammar, Disturbance solutions for the long-short-wave interaction system using bi-random Riccati-Bernoulli sub-ODE method, J. Taibah Univ. Sci., 14 (2020), 500–506. http://dx.doi.org/10.1080/16583655.2020.1747242 doi: 10.1080/16583655.2020.1747242
    [8] M. Abdelrahman, H. AlKhidhr, Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation, Results Phys., 18 (2020), 103294. http://dx.doi.org/10.1016/j.rinp.2020.103294 doi: 10.1016/j.rinp.2020.103294
    [9] J. Zhang, M. Wang, Y. Wang, Z. Fang, The improved F-expansion method and its applications, Phys. Lett. A, 350 (2006), 103–109. http://dx.doi.org/10.1016/j.physleta.2005.10.099 doi: 10.1016/j.physleta.2005.10.099
    [10] M. Mirzazadeh, M. Eslami, A. Biswas, 1-Soliton solution of KdV6 equation, Nonlinear Dyn., 80 (2015), 387–396. http://dx.doi.org/10.1007/s11071-014-1876-1 doi: 10.1007/s11071-014-1876-1
    [11] X. Yang, Z. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Diff. Equ., 2015 (2015), 117. http://dx.doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
    [12] Y. Alharbi, M. Sohaly, M. Abdelrahman, Fundamental solutions to the stochastic perturbed nonlinear Schrödinger's equation via gamma distribution, Results Phys., 25 (2021) 104249. http://dx.doi.org/10.1016/j.rinp.2021.104249 doi: 10.1016/j.rinp.2021.104249
    [13] S. Zhang, J. Tong, W. Wang, A generalized $ (\frac{G^{'}}{G})$-expansion method for the mKdv equation with variable coefficients, Phys. Lett. A, 372 (2008), 2254–2257. http://dx.doi.org/10.1016/j.physleta.2007.11.026 doi: 10.1016/j.physleta.2007.11.026
    [14] M. Abdelrahman, H. AlKhidhr, A robust and accurate solver for some nonlinear partial differential equations and tow applications, Phys. Scr., 95 (2020), 065212. http://dx.doi.org/10.1088/1402-4896/ab80e7 doi: 10.1088/1402-4896/ab80e7
    [15] M. Abdelrahman, O. Moaaz, New exact solutions to the dual-core optical fibers, Indian J. Phys., 94 (2020), 705–711. http://dx.doi.org/10.1007/s12648-019-01503-w doi: 10.1007/s12648-019-01503-w
    [16] H. Abdelwahed, M. Abdelrahman, New nonlinear periodic, solitonic, dissipative waveforms for modified-Kadomstev-Petviashvili-equation in nonthermal positron plasma, Results Phys., 19 (2020), 103393. http://dx.doi.org/10.1016/j.rinp.2020.103393 doi: 10.1016/j.rinp.2020.103393
    [17] X. Yan, S. Tian, M. Dong, T. Zhang, Rogue waves and their dynamics on bright-dark soliton background of the coupled higher order nonlinear Schrödinger equation, J. Phys. Soc. Jpn., 88 (2019), 074004. http://dx.doi.org/10.7566/JPSJ.88.074004 doi: 10.7566/JPSJ.88.074004
    [18] X. Yan, Lax pair, Darboux-dressing transformation and localized waves of the coupled mixed derivative nonlinear Schrödinger equation in a birefringent optical fiber, Appl. Math. Lett., 107 (2020), 106414. http://dx.doi.org/10.1016/j.aml.2020.106414 doi: 10.1016/j.aml.2020.106414
    [19] S. Kumar, H. Almusawa, I. Hamid, M. Akbar, M. Abdou, Abundant analytical soliton solutions and Evolutionary behaviors of various wave profiles to the Chaffee-Infante equation with gas diffusion in a homogeneous medium, Results Phys., 30 (2021), 104866. http://dx.doi.org/10.1016/j.rinp.2021.104866 doi: 10.1016/j.rinp.2021.104866
    [20] S. Kumar, K. Nisar, A. Kumar, A (2+1)-dimensional generalized Hirota-Satsuma-Ito equations: Lie symmetry analysis, invariant solutions and dynamics of soliton solutions, Results Phys., 28 (2021), 104621. http://dx.doi.org/10.1016/j.rinp.2021.104621 doi: 10.1016/j.rinp.2021.104621
    [21] A. Hendi, L. Ouahid, S. Kumar, S. Owyed, M. Abdou, Dynamical behaviors of various optical soliton solutions for the Fokas-Lenells equation, Mod. Phys. Lett. B, 35 (2021), 2150529. http://dx.doi.org/10.1142/S0217984921505291 doi: 10.1142/S0217984921505291
    [22] L. Ouahid, M. Abdou, S. Kumar, S. Owyed, S. Saha Ray, A plentiful supply of soliton solutions for DNA Peyrard-Bishop equation by means of a new auxiliary equation strategy, Mod. Phys. Lett. B, 35 (2021), 2150265. http://dx.doi.org/10.1142/S0217979221502659 doi: 10.1142/S0217979221502659
    [23] L. Ouahid, M. Abdou, S. Owyed, S. Kumar, New optical soliton solutions via two distinctive schemes for the DNA Peyrard-Bishop equation in fractal order, Mod. Phys. Lett. B, 35 (2021), 2150444. http://dx.doi.org/10.1142/S0217984921504443 doi: 10.1142/S0217984921504443
    [24] S. Kumar, B. Mohan, A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coefficient using Hirota method, Phys. Scr., 96 (2021), 125255. http://dx.doi.org/10.1088/1402-4896/ac3879 doi: 10.1088/1402-4896/ac3879
    [25] S. Dhiman, S. Kumar, H. Kharbanda, An extended (3+1)-dimensional Jimbo-Miwa equation: Symmetry reductions, invariant solutions and dynamics of different solitary waves, Mod. Phys. Lett. B, 35 (2021), 2150528. http://dx.doi.org/10.1142/S021798492150528X doi: 10.1142/S021798492150528X
    [26] S. Kumar, A. Kumar, H. Kharbanda, Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations, Phys. Scr., 95 (2020), 065207. http://dx.doi.org/10.1088/1402-4896/ab7f48 doi: 10.1088/1402-4896/ab7f48
    [27] S. Tian, J. Tu, T. Zhang, Y. Chen, Integrable discretizations and soliton solutions of an Eckhaus-Kundu equation, Appl. Math. Lett., 122 (2021), 107507. http://dx.doi.org/10.1016/j.aml.2021.107507 doi: 10.1016/j.aml.2021.107507
    [28] S. Tian, M. Xu, T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. http://dx.doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [29] S. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 106056. http://dx.doi.org/10.1016/j.aml.2019.106056 doi: 10.1016/j.aml.2019.106056
    [30] S. Tian, D. Guo, X. Wang, T. Zhang, Traveling wave, lump Wave, rogue wave, multi-kink solitary wave and interaction solutions in a (3+1)-dimensional Kadomtsev-Petviashvili equation with Bäcklund transformation, J. Appl. Anal. Comput., 11 (2021), 45–58. http://dx.doi.org/10.11948/20190086 doi: 10.11948/20190086
    [31] A. Maccari, The Kadomtsev-Petviashvili equation as a source of integrable model equations, J. Math. Phys., 37 (1996), 6207. http://dx.doi.org/10.1063/1.531773 doi: 10.1063/1.531773
    [32] S. Zhang, Exp-function method for solving Maccari system, Phys. Lett. A, 371 (2007), 65–71. http://dx.doi.org/10.1016/j.physleta.2007.05.091 doi: 10.1016/j.physleta.2007.05.091
    [33] J. Pan, L. Gong, Exact solutions to Maccari's system, Commun. Theor. Phys., 48 (2007), 7–10. http://dx.doi.org/ 10.1088/0253-6102/48/1/002 doi: 10.1088/0253-6102/48/1/002
    [34] A. Neirameh, New analytical solutions for the couple nonlinear Maccari's system, Alex. Eng. J., 55 (2016), 2839–2847. http://dx.doi.org/10.1016/j.aej.2016.07.007 doi: 10.1016/j.aej.2016.07.007
    [35] N. Chemaa, M. Younis, New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system, Nonlinear Dyn., 83 (2016), 1395–1401. http://dx.doi.org/10.1007/s11071-015-2411-8 doi: 10.1007/s11071-015-2411-8
    [36] G. Wang, L. Wang, J. Rao, J. He, New patterns of the two-dimensional rogue waves: (2+1)-dimensional Maccari system, Commun. Theor. Phys., 67 (2017), 601–610.
    [37] H. Baskonus, T. Sulaiman, H. Bulut, On the novel wave behaviors to the coupled nonlinear Maccari's system with complex structure, Optik, 131 (2017), 1036–1043. http://dx.doi.org/10.1016/j.ijleo.2016.10.135 doi: 10.1016/j.ijleo.2016.10.135
    [38] M. Shakeel, S. Mohyud-Din, M. Iqbal, Closed form solutions for coupled nonlinear Maccari system, Comput. Math. Appl., 76 (2018), 799–809. http://dx.doi.org/10.1016/j.camwa.2018.05.020 doi: 10.1016/j.camwa.2018.05.020
    [39] T. Xu, Y. Chen, Z. Qiao, Multi-dark soliton solutions for the (2+1)-dimensional multi-component Maccari system, Mod. Phys. Lett. B, 33 (2019), 1950390. http://dx.doi.org/10.1142/S0217984919503901 doi: 10.1142/S0217984919503901
    [40] W. Wan, S. Jia, J. Fleischer, Dispersive superfluid-like shock waves in nonlinear optics, Nature Phys., 3 (2007), 46–51. http://dx.doi.org/10.1038/nphys486 doi: 10.1038/nphys486
    [41] A. E. Dubinov, D. Yu. Kolotkov, Ion-acoustic supersolitons in plasma, Plasma Phys. Rep., 38 (2012), 909–912. http://dx.doi.org/10.1134/S1063780X12100054 doi: 10.1134/S1063780X12100054
    [42] F. Verheest, M. Hellberg, W. Hereman, Head-on collisions of electrostatic solitons in nonthermal plasmas, Phys. Rev. E, 86 (2012), 036402. http://dx.doi.org/10.1103/PhysRevE.86.036402 doi: 10.1103/PhysRevE.86.036402
    [43] S. Singh, G. Lakhina, Ion-acoustic supersolitons in the presence of non-thermal electrons, Commun. Nonlinear Sci., 23 (2015), 274–281. http://dx.doi.org/10.1016/j.cnsns.2014.11.017 doi: 10.1016/j.cnsns.2014.11.017
    [44] S. Demiray, Y. Pandir, H. Bulut, New solitary wave solutions of Maccari system, Ocean Eng., 103 (2015), 153–159. http://dx.doi.org/10.1016/j.oceaneng.2015.04.037 doi: 10.1016/j.oceaneng.2015.04.037
    [45] D. Rostamy, F. Zabihi, Exact solutions for different coupled nonlinear Maccari's systems, Nonlinear Studies, 19 (2012), 229–239.
    [46] T. Gill, C. Bedi, A. Bains, Envelope excitations of ion acoustic solitary waves in a plasma with superthermal electrons and positrons, Phys. Scr., 81 (2010), 055503. http://dx.doi.org/ 10.1088/0031-8949/81/05/055503 doi: 10.1088/0031-8949/81/05/055503
    [47] M. Uddin, M. Alam, A. Mamun, Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons, Phys. Plasmas, 22 (2015), 022111. http://dx.doi.org/10.1063/1.4907226 doi: 10.1063/1.4907226
    [48] J. He, Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbo machinery aerodynamics, International Journal of Turbo and Jet Engines, 14 (1997), 23–28. http://dx.doi.org/10.1515/TJJ.1997.14.1.23 doi: 10.1515/TJJ.1997.14.1.23
    [49] J. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Soliton. Fract., 19 (2004), 847–851. http://dx.doi.org/10.1016/S0960-0779(03)00265-0 doi: 10.1016/S0960-0779(03)00265-0
    [50] J. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20 (2006), 1141–1199. http://dx.doi.org/10.1142/S0217979206033796 doi: 10.1142/S0217979206033796
    [51] N. Kudryashov, Seven common errors in finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci., 14 (2009), 3507–3529. http://dx.doi.org/10.1016/j.cnsns.2009.01.023 doi: 10.1016/j.cnsns.2009.01.023
    [52] M. Abdelrahman, A note on Riccati-Bernoulli sub-ODE method combined with complex transform method applied to fractional differential equations, Nonlinear Engineering, 7 (2018), 279–285. http://dx.doi.org/10.1515/nleng-2017-0145 doi: 10.1515/nleng-2017-0145
    [53] S. Hassan, M. Abdelrahman, Solitary wave solutions for some nonlinear time fractional partial differential equations, Pramana-J. Phys., 91 (2018), 67. http://dx.doi.org/10.1007/s12043-018-1636-8 doi: 10.1007/s12043-018-1636-8
    [54] D. Kumar, J. Singh, D. Baleanu, S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259. http://dx.doi.org/10.1140/epjp/i2018-12081-3 doi: 10.1140/epjp/i2018-12081-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1655) PDF downloads(84) Cited by(18)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog